The Equivariant Volumes of the Permutahedron

被引:0
|
作者
Federico Ardila
Anna Schindler
Andrés R. Vindas-Meléndez
机构
[1] San Francisco State University,
[2] Universidad de Los Andes,undefined
[3] North Seattle College,undefined
[4] University of Kentucky,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is a permutation of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} with m cycles of lengths l1,…,lm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1, \ldots , l_m$$\end{document}, the subset of the permutahedron Πn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi _n$$\end{document} fixed by the natural action of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is a polytope with volume nm-2gcd(l1,…,lm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{m-2} \gcd (l_1, \ldots , l_m)$$\end{document}.
引用
收藏
页码:618 / 635
页数:17
相关论文
共 50 条
  • [1] The Equivariant Volumes of the Permutahedron
    Ardila, Federico
    Schindler, Anna
    Vindas-Melendez, Andres R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (03) : 618 - 635
  • [2] THE EQUIVARIANT EHRHART THEORY OF THE PERMUTAHEDRON
    Ardila, Federico
    Supina, Mariel
    Vindas-Melendez, Andres R.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (12) : 5091 - 5107
  • [3] From equivariant volumes to equivariant periods
    Cassia, Luca
    Piazzalunga, Nicolo
    Zabzine, Maxim
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 27 (04) : 961 - 1064
  • [4] Moment Maps and Equivariant Volumes
    Alberto Della Vedova
    Roberto Paoletti
    [J]. Acta Mathematica Sinica, English Series, 2007, 23 : 2155 - 2188
  • [5] Moment Maps and Equivariant Volumes
    Alberto DELLA VEDOVA
    Roberto PAOLETTI
    [J]. Acta Mathematica Sinica,English Series, 2007, 23 (12) : 2155 - 2188
  • [6] Moment maps and equivariant volumes
    Della Vedova, Alberto
    Paoletti, Roberto
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (12) : 2155 - 2188
  • [7] FROM PERMUTAHEDRON TO ASSOCIAHEDRON
    Brady, Thomas
    Watt, Colum
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 299 - 310
  • [8] A generalized permutahedron
    Pouzet, M
    Reuter, K
    Rival, I
    Zaguia, N
    [J]. ALGEBRA UNIVERSALIS, 1995, 34 (04) : 496 - 509
  • [9] Moving Frame Net: SE(3)-Equivariant Network for Volumes
    Sangalli, Mateus
    Blusseau, Samy
    Velasco-Forero, Santiago
    Angulo, Jesus
    [J]. NEURIPS WORKSHOP ON SYMMETRY AND GEOMETRY IN NEURAL REPRESENTATIONS, VOL 197, 2022, 197 : 81 - 97
  • [10] Equivariant volumes of non-compact quotients and instanton counting
    Martens, Johan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (03) : 827 - 857