Some Results About the Structure of Primitivity Domains for Linear Partial Differential Operators with Constant Coefficients

被引:0
|
作者
S. Delladio
机构
[1] University of Trento,Department of Mathematics
来源
关键词
47Fxx; 35Axx; 28A75; 26Bxx;
D O I
暂无
中图分类号
学科分类号
摘要
Let G(D) be a linear partial differential operator on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, with constant coefficients. Moreover let Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^n$$\end{document} be open and F∈Lloc1(Ω,CN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\in L^1_{\text {loc}} (\Omega , {\mathbb {C}}^N)$$\end{document}. Then any set of the form Af,F:={x∈Ω|(G(D)f)(x)=F(x)},withf∈Wlocg,1(Ω,Ck)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A_{f,F}:= \{ x\in \Omega \, \vert \, (G(D)f)(x)=F(x)\}, \text { with }f\in W^{g,1}_{\text {loc}}(\Omega , {\mathbb {C}}^k) \end{aligned}$$\end{document}is said to be a G-primitivity domain of F. We provide some results about the structure of G-primitivity domains of F at the points of the (suitably defined) G-nonintegrability set of F. A Lusin type theorem for G(D) is also provided. Finally, we give applications to the Maxwell type system and to the multivariate Cauchy-Riemann system.
引用
收藏
相关论文
共 50 条