In this article, we study the existence and asymptotic behavior of multi-bump solutions for nonlinear Choquard equation with a general nonlinearity −Δu+(λa(x)+1)u=(1|x|α*F(u))f(u)inRN,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\Delta u + (\lambda a(x) + 1)u = \left(\frac{1}{|x|^\alpha}* F(u)\right) f(u) \; in \; \mathbb{R}^N,$$\end{document} where N ≥ 3, 0 < α < min{N, 4}, λ is a positive parameter and the nonnegative potential function a(x) is continuous. Using variational methods, we prove that if the potential well int(a−1(0)) consists of k disjoint components, then there exist at least 2k − 1 multi-bump solutions. The asymptotic behavior of these solutions is also analyzed as λ → +∞.
机构:
Korea Adv Inst Sci & Technol, Stochast Anal & Applicat Res Ctr, 291 Daehak Ro, Daejeon 305701, South KoreaKorea Adv Inst Sci & Technol, Stochast Anal & Applicat Res Ctr, 291 Daehak Ro, Daejeon 305701, South Korea
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China