Microstructure evolution of Inconel 738 fabricated by pulsed laser powder bed fusion

被引:0
|
作者
Jose Alberto Muñiz-Lerma
Yuan Tian
Xianglong Wang
Raynald Gauvin
Mathieu Brochu
机构
[1] McGill University,Department of Mining and Materials Engineering
来源
关键词
Pulse laser powder bed fusion; Additive manufacturing; Nickel-based superalloy; Microstructure evolution;
D O I
暂无
中图分类号
学科分类号
摘要
High-density crack-free Inconel 738 samples were manufactured into both thin-walled and bulk samples using pulsed laser powder bed fusion (P-LPBF). As-built thin-walled samples presented a dendritic microstructure with primary dendrite arm spacing (PDAS) of 1.02 ± 0.21 µm. This PDAS was consistent along the length of the as-built wall, which led to a homogeneously distributed hardness across the deposit. Energy dispersive spectroscopy (EDS) maps showed near-equilibrium elemental segregation due to limited solute trapping occurring during rapid solidification. In the bulk of the as-built samples, a PDAS of 0.69 ± 0.06 µm was obtained. The smaller dendrite arm spacing which developed in the bulk was a result of the higher cooling rates obtained in this volume of sample. The EDS maps of the bulk samples presented comparative elemental constituents of the different phases as seen in the thin-walled sample. The Electron Backscattered Diffraction (EBSD) map of the bulk sample presented columnar grains with strong texture along the (100) crystallographic orientation planes. After annealing and aging treatment, cuboidal primary γʹ precipitates and secondary γʹ precipitates were observed. No strain–age cracks were found after the heat treatment. The EBSD map displayed comparative results to the as-built condition; with columnar grains with preferred orientation towards (100) planes.
引用
收藏
页码:97 / 107
页数:10
相关论文
共 50 条
  • [1] Microstructure evolution of Inconel 738 fabricated by pulsed laser powder bed fusion
    Muniz-Lerma, Jose Alberto
    Tian, Yuan
    Wang, Xianglong
    Gauvin, Raynald
    Brochu, Mathieu
    [J]. PROGRESS IN ADDITIVE MANUFACTURING, 2019, 4 (02) : 97 - 107
  • [2] Microstructure and mechanical properties of crack-free Inconel 738 fabricated by laser powder bed fusion
    Jena, Ashutosh
    Atabay, Sila Ece
    Brochu, Mathieu
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 850
  • [3] MICROSTRUCTURE OF IN738LC FABRICATED USING LASER POWDER BED FUSION ADDITIVE MANUFACTURING
    Menon, Nandana
    Mahdi, Tanjheel Hassan
    Basak, Amrita
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 7, 2021,
  • [4] Microstructure of IN738LC Fabricated Using Laser Powder Bed Fusion Additive Manufacturing
    Menon, Nandana
    Mahdi, Tanjheel Hasan
    Basak, Amrita
    [J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2022, 144 (03):
  • [5] Effect of Scanning Speed on Microstructure and Properties of Inconel 718 Fabricated by Laser Powder Bed Fusion
    Cheng, Qin
    Yan, Xue
    [J]. TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (04) : 997 - 1006
  • [6] Effect of Scanning Speed on Microstructure and Properties of Inconel 718 Fabricated by Laser Powder Bed Fusion
    Qin Cheng
    Xue Yan
    [J]. Transactions of the Indian Institute of Metals, 2023, 76 : 997 - 1006
  • [7] Experimental investigation of laser scan strategy on the microstructure and properties of Inconel 718 parts fabricated by laser powder bed fusion
    Ravichander, Bharath Bhushan
    Mamidi, Kiriti
    Rajendran, Vignesh
    Farhang, Behzad
    Ganesh-Ram, Aditya
    Hanumantha, Manjunath
    Moghaddam, Narges Shayesteh
    Amerinatanzi, Amirhesam
    [J]. MATERIALS CHARACTERIZATION, 2022, 186
  • [8] Evolution of dislocation cellular pattern in Inconel 718 alloy fabricated by laser powder-bed fusion
    He, Minglin
    Cao, Hailin
    Liu, Qian
    Yi, Jiang
    Ni, Yong
    Wang, Shuai
    [J]. ADDITIVE MANUFACTURING, 2022, 55
  • [9] Understanding the microstructure and mechanical properties of IN738LC fabricated by laser powder bed fusion at different partition lengths
    Wang, Yi
    Zhang, Hongmei
    Bian, Hairong
    Wu, Yujie
    Wang, Liliang
    Luo, Kaiyu
    Lu, Jinzhong
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 912
  • [10] Microstructure and mechanical property comparison of Inconel alloys fabricated using micro and conventional laser powder bed fusion
    Chen, Yixuan
    Wang, Weihao
    Ou, Yao
    Chang, Hai
    Wu, Yingna
    Yang, Rui
    Zhai, Zirong
    Li, Kefei
    Shen, Liyaowei
    [J]. MATERIALS & DESIGN, 2024, 237