Planar Turán Numbers of Cubic Graphs and Disjoint Union of Cycles

被引:0
|
作者
Yongxin Lan
Yongtang Shi
Zi-Xia Song
机构
[1] Hebei University of Technology,School of Science
[2] Nankai University,Center for Combinatorics and LPMC
[3] University of Central Florida,Department of Mathematics
来源
Graphs and Combinatorics | 2024年 / 40卷
关键词
Turán number; Extremal planar graph; Planar triangulation; 05C10; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
The planar Turán number of a graph H, denoted by exP(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex_{_\mathcal {P}}(n,H)$$\end{document}, is the maximum number of edges in a planar graph on n vertices without containing H as a subgraph. This notion was introduced by Dowden in 2016 and has attracted quite some attention since then; those work mainly focus on finding exP(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex_{_\mathcal {P}}(n,H)$$\end{document} when H is a cycle or Theta graph or H has maximum degree at least four. In this paper, we first completely determine the exact values of exP(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex_{_\mathcal {P}}(n,H)$$\end{document} when H is a cubic graph. We then prove that exP(n,2C3)=⌈5n/2⌉-5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex_{_\mathcal {P}}(n,2C_3)=\lceil 5n/2\rceil -5$$\end{document} for all n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 6$$\end{document}, and obtain the lower bounds of exP(n,2Ck)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex_{_\mathcal {P}}(n,2C_k)$$\end{document} for all n≥2k≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2k\ge 8$$\end{document}. Finally, we also completely determine the exact values of exP(n,K2,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex_{_\mathcal {P}}(n,K_{2,t})$$\end{document} for all t≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 3$$\end{document} and n≥t+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge t+2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Planar Turán Numbers of Cubic Graphs and Disjoint Union of Cycles
    Lan, Yongxin
    Shi, Yongtang
    Song, Zi-Xia
    GRAPHS AND COMBINATORICS, 2024, 40 (02)
  • [2] Turán Numbers for Disjoint Copies of Graphs
    Izolda Gorgol
    Graphs and Combinatorics, 2011, 27 : 661 - 667
  • [3] Hypergraph Turán Numbers of Vertex Disjoint Cycles
    Ran GU
    Xue-liang LI
    Yong-tang SHI
    ActaMathematicaeApplicataeSinica, 2022, 38 (01) : 229 - 234
  • [4] Hypergraph Turán Numbers of Vertex Disjoint Cycles
    Ran Gu
    Xue-liang Li
    Yong-tang Shi
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 229 - 234
  • [5] Planar Turán Numbers on Short Cycles of Consecutive Lengths
    Liangli Du
    Bing Wang
    Mingqing Zhai
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2395 - 2405
  • [6] SHORT DISJOINT CYCLES IN CUBIC BRIDGELESS GRAPHS
    BRANDSTADT, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 570 : 239 - 249
  • [7] Ramsey numbers for a disjoint union of good graphs
    Bielak, Halina
    DISCRETE MATHEMATICS, 2010, 310 (09) : 1501 - 1505
  • [8] Planar Turan number of the disjoint union of cycles
    Li, Ping
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 260 - 274
  • [9] Ramsey numbers for a disjoint union of some graphs
    Bielak, Halina
    APPLIED MATHEMATICS LETTERS, 2009, 22 (04) : 475 - 477
  • [10] Planar Tur acute accent an Numbers of Cycles: A Counterexample
    Cranston, Daniel W.
    Lidicky, Bernard
    Liu, Xiaonan
    Shantanam, Abhinav
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 29 (03):