Noncompact surfaces are packable

被引:0
|
作者
G. Brock Williams
机构
[1] Texas Tech University LUBBOCK,Department of Mathematics
来源
关键词
Riemann Surface; Fundamental Domain; Finite Type; Circle Packing; Closed Chain;
D O I
暂无
中图分类号
学科分类号
摘要
We show that every noncompact Riemann surface of finite type supports a circle packing. This extends earlier work of Robert Brooks [6] and Phil Bowers and Ken Stephenson [3, 4], who showed that the packable surfaces are dense in moduli space.
引用
收藏
页码:243 / 255
页数:12
相关论文
共 50 条
  • [1] Noncompact surfaces are packable
    Williams, GB
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2003, 90 (1): : 243 - 255
  • [2] Packable hyperbolic surfaces with symmetries
    Dostert, Maria
    Kolpakov, Alexander
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (01): : 103 - 113
  • [3] NONCOMPACT LIOUVILLE SURFACES
    IGARASHI, M
    KIYOHARA, K
    SUGAHARA, K
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1993, 45 (03) : 459 - 479
  • [4] CLASSIFICATION OF NONCOMPACT SURFACES WITH BOUNDARY
    Prishlyak, A. O.
    Mischenko, K. I.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2007, 13 (01): : 62 - 66
  • [5] REGULAR TRIANGULATIONS OF NONCOMPACT SURFACES
    MOHAR, B
    [J]. ARS COMBINATORIA, 1991, 31 : 259 - 266
  • [6] EXISTENCE OF MAPPINGS INTO NONCOMPACT RIEMANN SURFACES
    RODIN, B
    SARIO, L
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1966, 17 : 219 - &
  • [7] On the fundamental theorem of compact and noncompact surfaces
    Konya, Eszter
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2005, 32 : 211 - 224
  • [8] Meromorphic Approximation on Noncompact Riemann Surfaces
    Askaripour, Nadya
    Boivin, Andre
    [J]. COMPLEX ANALYSIS AND POTENTIAL THEORY, 2012, 55 : 171 - +
  • [9] SURFACES IN NONCOMPACT 3-MANIFOLDS
    TUCKER, TW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A229 - A229
  • [10] Harmonic diffeomorphisms of noncompact surfaces and Teichmuller spaces
    Markovic, V
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 : 103 - 114