To evaluate the biodegradation potential of 1,4-dioxane in natural environments, a total of 20 environmental samples including river water, activated sludge, soil from the drainage area of a chemical factory and garden soil were subjected to a 1,4-dioxane degradation test. The five soil samples from the drainage area of the chemical factory were capable of reducing 100 mg l−1 of 1,4-dioxane to below the detection limit (0.8 mg l−1) within 33 days. In one activated sludge sample, 100 mg l−1 of 1,4-dioxane decreased by 69% within 14 days via cometabolic degradation in the presence of 100 mg l−1 of tetrahydrofuran (THF). The ability of all samples to degrade 1,4-dioxane degradation with or without THF increased after repeated enrichment, except for one soil sample from the drainage area of the chemical factory that was no longer able to degrade 1,4-dioxane after the third cycle of enrichment. However, most of the samples (14/20) were not able to degrade 1,4-dioxane degradation. Thus, it can be concluded that the potential for 1,4-dioxane degradation is not ubiquitously distributed in natural environment.