F-theory and AdS3/CFT2 (2, 0)

被引:0
|
作者
Christopher Couzens
Dario Martelli
Sakura Schäfer-Nameki
机构
[1] King’s College London,Department of Mathematics
[2] University of Oxford,Mathematical Institute
关键词
AdS-CFT Correspondence; F-Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We continue to develop the program initiated in [1] of studying supersymmetric AdS3 backgrounds of F-theory and their holographic dual 2d superconformal field theories, which are dimensional reductions of theories with varying coupling. Imposing 2d N=02\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(0,2\right) $$\end{document} supersymmetry,wederivethegeneralconditionsonthegeometryforTypeIIB AdS3 solutions with varying axio-dilaton and five-form flux. Locally the compact part of spacetime takes the form of a circle fibration over an eight-fold Y8τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{Y}}_8^{\tau } $$\end{document}, which is elliptically fibered over a base ℳ˜6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde{\mathrm{\mathcal{M}}}}_6 $$\end{document}. We construct two classes of solutions given in terms of a product ansatz ℳ6˜=Σ×M4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{{\mathrm{\mathcal{M}}}_6}=\varSigma \times {\mathrm{M}}_4 $$\end{document}, where Σ is a complex curve and ℳ˜4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde{\mathrm{\mathcal{M}}}}_4 $$\end{document} is locally a Kähler surface. In the first class ℳ˜4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde{\mathrm{\mathcal{M}}}}_4 $$\end{document} is globally a Kähler surface and we take the elliptic fibration to vary non-trivially over either of these two factors, where in both cases the metrics on the total space of the elliptic fibrations are not Ricci-flat. In the second class the metric on the total space of the elliptic fibration over either curve or surface are Ricci-flat. This results in solutions of the type AdS3 × K3 × ℳ5τ, dual to 2d (0, 2) SCFTs, and AdS3 × S3/Γ × CY3, dual to 2d (0, 4) SCFTs, respectively. In all cases we compute the charges for the dual field theories with varying coupling and find agreement with the holographic results. We also show that solutions with enhanced 2d N=22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,2\right) $$\end{document} supersymmetry must have constant axio-dilaton. Allowing the internal geometry to be non-compact leads to the most general class of Type IIB AdS5 solutions with varying axio-dilaton, i.e. F-theoretic solutions, that are dual to 4d N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SCFTs.
引用
收藏
相关论文
共 50 条
  • [1] F-theory and AdS3/CFT2 (2,0)
    Couzens, Christopher
    Martelli, Dario
    Schafer-Nameki, Sakura
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [2] F-theory and AdS3/CFT2
    Couzens, Christopher
    Lawrie, Craig
    Martelli, Dario
    Schafer-Nameki, Sakura
    Wong, Jin-Mann
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (08):
  • [3] F-theory and AdS3/CFT2
    Christopher Couzens
    Craig Lawrie
    Dario Martelli
    Sakura Schäfer-Nameki
    Jin-Mann Wong
    Journal of High Energy Physics, 2017
  • [4] Disorder in AdS3/CFT2
    Dorband, Moritz
    Grumiller, Daniel
    Meyer, Rene
    Zhao, Suting
    SCIPOST PHYSICS, 2024, 16 (01):
  • [5] Effective AdS3/CFT2
    Chakraborty, Soumangsu
    Giveon, Amit
    Kutasov, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (03):
  • [6] Deriving the AdS3/CFT2 correspondence
    Eberhardt, Lorenz
    Gaberdiel, Matthias R.
    Gopakumar, Rajesh
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [7] AdS3/CFT2 to AdS2/CFT1
    Gupta, Rajesh Kumar
    Sen, Ashoke
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04):
  • [8] A NOTE ON SCALAR FIELD THEORY IN AdS3/CFT2
    Minces, Pablo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (14): : 2815 - 2836
  • [9] Worldsheet scattering in AdS3/CFT2
    Sundin, Per
    Wulff, Linus
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [10] Matching of correlators in AdS3/CFT2
    Taylor, Marika
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (06):