Harnack Inequality for Non-Local Schrödinger Operators

被引:0
|
作者
Siva Athreya
Koushik Ramachandran
机构
[1] Indian Statistical Institute Bangalore,
[2] Oklahoma State University Stillwater,undefined
来源
Potential Analysis | 2018年 / 48卷
关键词
Conditional gauge; Gauge; Harnack inequality; Jump diffusion processes; Non-local operators; Carleson estimate; Boundary harnack principle; 3G Inequality; 60J45; 60J50; 31C05; 31C35;
D O I
暂无
中图分类号
学科分类号
摘要
Let x∈Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x \in \mathbb {R}^{d}$\end{document}, d ≥ 3, and f:Rd→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: \mathbb {R}^{d} \rightarrow \mathbb {R}$\end{document} be a twice differentiable function with all second partial derivatives being continuous. For 1 ≤ i, j ≤ d, let aij:Rd→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{ij} : \mathbb {R}^{d} \rightarrow \mathbb {R}$\end{document} be a differentiable function with all partial derivatives being continuous and bounded. We shall consider the Schrödinger operator associated to 𝓛f(x)=12∑i=1d∑j=1d∂∂xiaij(·)∂f∂xj(x)+∫Rd\{0}[f(y)-f(x)]J(x,y)dy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}f(x) = \frac12 \sum\limits_{i=1}^{d} \sum\limits_{j=1}^{d} \frac{\partial}{\partial x_{i}} \left( a_{ij}(\cdot) \frac{\partial f}{\partial x_{j}}\right)(x) + {\int}_{\mathbb{R}^{d}\setminus{\{0\}}} [f(y) - f(x) ]J(x,y)dy $$\end{document}where J:Rd×Rd→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J: \mathbb {R}^{d} \times \mathbb {R}^{d} \rightarrow \mathbb {R}$\end{document} is a symmetric measurable function. Let q:Rd→R.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q: \mathbb {R}^{d} \rightarrow \mathbb {R}.$\end{document} We specify assumptions on a, q, and J so that non-negative bounded solutions to 𝓛f+qf=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}f + qf = 0 $$\end{document}satisfy a Harnack inequality. As tools we also prove a Carleson estimate, a uniform Boundary Harnack Principle and a 3G inequality for solutions to 𝓛f=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {L}f = 0.$\end{document}
引用
收藏
页码:515 / 551
页数:36
相关论文
共 50 条
  • [1] Harnack Inequality for Non-Local Schrodinger Operators
    Athreya, Siva
    Ramachandran, Koushik
    [J]. POTENTIAL ANALYSIS, 2018, 48 (04) : 515 - 551
  • [2] HARNACK'S INEQUALITY FOR GENERALIZED SUBELLIPTIC SCHRDINGER OPERATORS
    Lijing Sun (University of Wisconsin-Milwaukee
    [J]. Analysis in Theory and Applications, 2008, (03) : 247 - 259
  • [3] Absence of embedded eigenvalues for non-local Schrödinger operators
    Atsuhide Ishida
    József Lőrinczi
    Itaru Sasaki
    [J]. Journal of Evolution Equations, 2022, 22
  • [4] Littlewood–Paley–Stein functions for non-local Schrödinger operators
    Huaiqian Li
    Jian Wang
    [J]. Positivity, 2020, 24 : 1293 - 1312
  • [5] Fall-Off of Eigenfunctions for Non-Local Schrödinger Operators with Decaying Potentials
    Kamil Kaleta
    József Lőrinczi
    [J]. Potential Analysis, 2017, 46 : 647 - 688
  • [6] Zero-Energy Bound State Decay for Non-local Schrödinger Operators
    Kamil Kaleta
    József Lőrinczi
    [J]. Communications in Mathematical Physics, 2020, 374 : 2151 - 2191
  • [7] On the parabolic Harnack inequality for non-local diffusion equations
    Dominik Dier
    Jukka Kemppainen
    Juhana Siljander
    Rico Zacher
    [J]. Mathematische Zeitschrift, 2020, 295 : 1751 - 1769
  • [8] On the parabolic Harnack inequality for non-local diffusion equations
    Dier, Dominik
    Kemppainen, Jukka
    Siljander, Juhana
    Zacher, Rico
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (3-4) : 1751 - 1769
  • [9] Harnack inequalities for non-local operators of variable order
    Bass, RF
    Kassmann, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (02) : 837 - 850
  • [10] Threshold Between Short and Long-range Potentials for Non-local Schrödinger Operators
    Atsuhide Ishida
    Kazuyuki Wada
    [J]. Mathematical Physics, Analysis and Geometry, 2020, 23