Well-posedness of the non-local conservation law by stochastic perturbation

被引:0
|
作者
Christian Olivera
机构
[1] Universidade Estadual de Campinas,Departamento de Matemática
来源
manuscripta mathematica | 2020年 / 162卷
关键词
60H15; 35R60; 35F10; 60H30;
D O I
暂无
中图分类号
学科分类号
摘要
Stochastic non-local conservation law equation in the presence of discontinuous flux functions is considered in an L1∩L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}\cap L^{2}$$\end{document} setting. The flux function is assumed bounded and integrable (spatial variable). Our result is to prove existence and uniqueness of weak solutions. The solution is strong solution in the probabilistic sense. The proofs are constructive and based on the method of characteristics (in the presence of noise), Itô–Wentzell–Kunita formula and commutators. Our results are new , to the best of our knowledge, and are the first nonlinear extension of the seminar paper (Flandoli et al. in Invent Math 180:1–53, 2010) where the linear case was addressed.
引用
收藏
页码:367 / 387
页数:20
相关论文
共 50 条
  • [1] Well-posedness of the non-local conservation law by stochastic perturbation
    Olivera, Christian
    MANUSCRIPTA MATHEMATICA, 2020, 162 (3-4) : 367 - 387
  • [2] Well-posedness of a conservation law with non-local flux arising in traffic flow modeling
    Blandin, Sebastien
    Goatin, Paola
    NUMERISCHE MATHEMATIK, 2016, 132 (02) : 217 - 241
  • [3] Well-posedness of a conservation law with non-local flux arising in traffic flow modeling
    Sebastien Blandin
    Paola Goatin
    Numerische Mathematik, 2016, 132 : 217 - 241
  • [4] Well-posedness of IBVP for 1D scalar non-local conservation laws
    Goatin, Paola
    Rossi, Elena
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [5] Well-posedness of the transport equation by stochastic perturbation
    Flandoli, F.
    Gubinelli, M.
    Priola, E.
    INVENTIONES MATHEMATICAE, 2010, 180 (01) : 1 - 53
  • [6] Well-posedness of the transport equation by stochastic perturbation
    F. Flandoli
    M. Gubinelli
    E. Priola
    Inventiones mathematicae, 2010, 180 : 1 - 53
  • [7] Well-posedness of a non-local model for material flow on conveyor belts
    Rossi, Elena
    Weissen, Jennifer
    Goatin, Paola
    Goettlich, Simone
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (02): : 679 - 704
  • [8] Well-posedness of a non-local model for material flow on conveyor belts
    Rossi, Elena
    Weißen, Jennifer
    Goatin, Paola
    Göttlich, Simone
    ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54 (02) : 679 - 704
  • [9] Well-posedness of a non-local abstract Cauchy problem with a singular integral
    Haiyan Jiang
    Tiao Lu
    Xiangjiang Zhu
    Frontiers of Mathematics in China, 2019, 14 : 77 - 93
  • [10] Well-posedness of a non-local abstract Cauchy problem with a singular integral
    Jiang, Haiyan
    Lu, Tiao
    Zhu, Xiangjiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (01) : 77 - 93