SSTP: Social and Spatial-Temporal Aware Next Point-of-Interest Recommendation

被引:0
|
作者
Junzhuang Wu
Yujing Zhang
Yuhua Li
Yixiong Zou
Ruixuan Li
Zhenyu Zhang
机构
[1] Huazhong University of Science and Technology,School of Computer Science and Technology
关键词
Recommendation systems; Location-based social networks; Point-of-interest; Attention mechanism; Graph attention network;
D O I
暂无
中图分类号
学科分类号
摘要
The expansion of available information in location-based social networks (LBSNs) has led to information overload, making it urgent to discover users’ next point-of-interest (POI). Some existing works only consider certain modal information in LBSNs and do not transform them into high-dimensional structures, which hinders the alleviation of the data sparsity problem. Moreover, many approaches rely solely on social relationships, making it difficult to recommend POIs to new users without association information. To tackle these challenges, we propose a social- and spatial–temporal-aware next point-of-Interest (SSTP) recommendation model. SSTP uses two feature encoders based on self-attention mechanism and gate recurrent unit to model users’ check-in enhancement sequence hierarchically. We also design a random neighborhood sampling approach to mine user social relationships, thus alleviating the user cold start problem. Finally, we propose a geographical-aware graph attention network to learn the sensitivity of users to distance. Extensive experiments on two real-world datasets show that SSTP outperforms state-of-the-art models, improving Hit@k by 2.26–6.55%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and MAP@k by 3.49–6.55%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}. Moreover, SSTP has better performance on sparse data, with an average improvement of 6.09%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} on the Hit@k. The code can be downloaded at https://github.com/Rih0/sstp.
引用
收藏
页码:329 / 343
页数:14
相关论文
共 50 条
  • [1] SSTP: Social and Spatial-Temporal Aware Next Point-of-Interest Recommendation
    Wu, Junzhuang
    Zhang, Yujing
    Li, Yuhua
    Zou, Yixiong
    Li, Ruixuan
    Zhang, Zhenyu
    [J]. DATA SCIENCE AND ENGINEERING, 2023, 8 (04) : 329 - 343
  • [2] Point-of-interest recommendation based on the spatial-temporal graph
    Li, Mengyue
    Li, Fei
    Wang, Zhanquan
    [J]. International Journal of Web Information Systems, 2024, 20 (06) : 585 - 602
  • [3] ST-PIL: Spatial-Temporal Periodic Interest Learning for Next Point-of-Interest Recommendation
    Cui, Qiang
    Zhang, Chenrui
    Zhang, Yafeng
    Wang, Jinpeng
    Cai, Mingchen
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2960 - 2964
  • [4] Improving the spatial-temporal aware attention network with dynamic trajectory graph learning for next Point-Of-Interest recommendation
    Cao, Gang
    Cui, Shengmin
    Joe, Inwhee
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [5] Next Point-of-Interest Recommendation Based on Joint Mining of Spatial-Temporal and Semantic Sequential Patterns
    Tian, Jing
    Zhao, Zilin
    Ding, Zhiming
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (07)
  • [6] STELLAR: Spatial-Temporal Latent Ranking for Successive Point-of-Interest Recommendation
    Zhao, Shenglin
    Zhao, Tong
    Yang, Haiqin
    Lyu, Michael R.
    King, Irwin
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 315 - 321
  • [7] STA-TCN: Spatial-temporal Attention over Temporal Convolutional Network for Next Point-of-interest Recommendation
    Ou, Junjie
    Jin, Haiming
    Wang, Xiaocheng
    Jiang, Hao
    Wang, Xinbing
    Zhou, Chenghu
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (09)
  • [8] Modeling POI-Specific Spatial-Temporal Context for Point-of-Interest Recommendation
    Wang, Hao
    Shen, Huawei
    Cheng, Xueqi
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT I, 2020, 12084 : 130 - 141
  • [9] Global spatio-temporal aware graph neural network for next point-of-interest recommendation
    Jingkuan Wang
    Bo Yang
    Haodong Liu
    Dongsheng Li
    [J]. Applied Intelligence, 2023, 53 : 16762 - 16775
  • [10] Global spatio-temporal aware graph neural network for next point-of-interest recommendation
    Wang, Jingkuan
    Yang, Bo
    Liu, Haodong
    Li, Dongsheng
    [J]. APPLIED INTELLIGENCE, 2023, 53 (13) : 16762 - 16775