Singular modules for affine Lie algebras, and applications to irregular WZNW conformal blocks

被引:0
|
作者
Giovanni Felder
Gabriele Rembado
机构
[1] ETH Zurich,Department of Mathematics
[2] Hausdorff Centre for Mathematics (HCM),undefined
来源
Selecta Mathematica | 2023年 / 29卷
关键词
Affine Lie algebras; Conformal field theory; Irregular meromorphic connections; Integrable quantum systems; Isomonodromic deformations; 81T40; 17B38; 17B10;
D O I
暂无
中图分类号
学科分类号
摘要
We give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorphic connections: the open de Rham spaces. The Segal–Sugawara representation of the Virasoro algebra is used to show that the spaces of irregular conformal blocks assemble into a flat vector bundle over the space of isomonodromy times à la Klarès, and we provide a universal version of the resulting flat connection generalising the irregular KZ connection of Reshetikhin and the dynamical KZ connection of Felder–Markov–Tarasov–Varchenko.
引用
收藏
相关论文
共 50 条