Continuous time random walks and the Cauchy problem for the heat equation

被引:0
|
作者
Hugo Aimar
Gastón Beltritti
Ivana Gómez
机构
[1] CCT CONICET Santa Fe,Instituto de Matemática Aplicada del Litoral, UNL, CONICET
[2] Predio “Dr. Alberto Cassano”,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We deal with anomalous diffusions induced by continuous time random walks - CTRW in ℝn. A particle moves in ℝn in such a way that the probability density function u(·, t) of finding it in region Ω of ℝn is given by ∫Ωu(x, t)dx. The dynamics of the diffusion is provided by a space time probability density J(x, t) compactly supported in {t ≥ 0}. For t large enough, u satisfies the equation u(x,t)=[(J−δ)*u](x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\left( {x,t} \right) = \left[ {\left( {J - \delta } \right)*u} \right]\left( {x,t} \right)$$\end{document}, where δ is the Dirac delta in space-time. We give a sense to a Cauchy type problem for a given initial density distribution f. We use Banach fixed point method to solve it and prove that under parabolic rescaling of J, the equation tends weakly to the heat equation and that for particular kernels J, the solutions tend to the corresponding temperatures when the scaling parameter approaches 0.
引用
收藏
页码:83 / 101
页数:18
相关论文
共 50 条
  • [1] Continuous time random walks and the Cauchy problem for the heat equation
    Aimar, Hugo
    Beltritti, Gaston
    Gomez, Ivana
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 136 (01): : 83 - 101
  • [2] The Cauchy problem for the heat equation with a random right side
    Kozachenko, Yuriy V.
    Slyvka-Tylyshchak, Anna I.
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (01) : 53 - 64
  • [3] FROM CONTINUOUS TIME RANDOM WALKS TO THE GENERALIZED DIFFUSION EQUATION
    Sandev, Trifce
    Metzler, Ralf
    Chechkin, Aleksei
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 10 - 28
  • [4] Transport Equation Evaluation of Coupled Continuous Time Random Walks
    Harvey Scher
    Karen Willbrand
    Brian Berkowitz
    Journal of Statistical Physics, 2010, 141 : 1093 - 1103
  • [5] From continuous time random walks to the generalized diffusion equation
    Trifce Sandev
    Ralf Metzler
    Aleksei Chechkin
    Fractional Calculus and Applied Analysis, 2018, 21 : 10 - 28
  • [6] Transport Equation Evaluation of Coupled Continuous Time Random Walks
    Scher, Harvey
    Willbrand, Karen
    Berkowitz, Brian
    JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (06) : 1093 - 1103
  • [7] Continuous time random walks and heat transfer in porous media
    Simon Emmanuel
    Brian Berkowitz
    Transport in Porous Media, 2007, 67 : 413 - 430
  • [8] Continuous time random walks and heat transfer in porous media
    Emmanuel, Simon
    Berkowitz, Brian
    TRANSPORT IN POROUS MEDIA, 2007, 67 (03) : 413 - 430
  • [9] CONTINUOUS-TIME RANDOM-WALKS AND THE FRACTIONAL DIFFUSION EQUATION
    ROMAN, HE
    ALEMANY, PA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (10): : 3407 - 3410
  • [10] From Continuous Time Random Walks to Multidimensional Conformable Diffusion Equation
    Guswanto, Bambang Hendriya
    Marfungah, Aniatun
    Yuniarto, Dwiky Octa
    Jihad, Muhamad Ichlasul
    Mashuri
    Maryani, Sri
    Istikaanah, Najmah
    IAENG International Journal of Applied Mathematics, 2024, 54 (07) : 1445 - 1458