Application of Machine Learning Methods to Predicting the Degree of Crystallinity of MFI Type Zeolites

被引:0
|
作者
A. I. Nikiforov
I. V. Babchuk
V. A. Vorobkalo
E. A. Chesnokov
D. L. Chistov
机构
[1] Department of Chemistry,
[2] Lomonosov Moscow State University,undefined
[3] Ozon Holdings PLC,undefined
来源
Petroleum Chemistry | 2022年 / 62卷
关键词
zeolites; MFI; prediction of properties; machine learning methods; gradient boosting; big data analytics; degree of crystallinity;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:322 / 328
页数:6
相关论文
共 50 条
  • [1] Application of Machine Learning Methods to Predicting the Degree of Crystallinity of MFI Type Zeolites
    Nikiforov, A., I
    Babchuk, I., V
    Vorobkalo, V. A.
    Chesnokov, E. A.
    Chistov, D. L.
    [J]. PETROLEUM CHEMISTRY, 2022, 62 (03) : 322 - 328
  • [2] Synthesis and application of chainlike MFI type zeolites
    Zhang, Yesu
    Quan, Yanhong
    Ding, Xinxin
    Ren, Jun
    [J]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (08): : 4382 - 4392
  • [3] Synthesis and application of colloidal nanocrystals of the MFI-type zeolites
    Watanabe, Ryota
    Yokoi, Toshiyuki
    Tatsumi, Takashi
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 356 (02) : 434 - 441
  • [4] Application of machine learning methods for predicting new superhard materials
    Mazhnik, Efim
    Oganov, Artem R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 128 (07)
  • [5] Application of machine learning methods for predicting the mechanical properties of rubbercrete
    Miladirad, Kaveh
    Golafshani, Emadaldin Mohammadi
    Safehian, Majid
    Sarkar, Alireza
    [J]. ADVANCES IN CONCRETE CONSTRUCTION, 2022, 14 (01) : 15 - 34
  • [6] Application of machine learning methods on predicting irrigation water quality
    Lin Y.P.
    Lien W.Y.
    Chen H.Y.
    He J.H.
    Chou C.F.
    [J]. Taiwan Water Conservancy, 2020, 68 (01): : 1 - 14
  • [7] Application of Machine Learning Methods in Predicting Nuclear Receptors and their Families
    Zhang, Zi-Mei
    Guan, Zheng-Xing
    Wang, Fang
    Zhang, Dan
    Ding, Hui
    [J]. MEDICINAL CHEMISTRY, 2020, 16 (05) : 594 - 604
  • [8] Predicting the hydrogen uptake ability of a wide range of zeolites utilizing supervised machine learning methods
    Alizadeh, Seyed Mehdi Seyed
    Parhizi, Zahra
    Alibak, Ali Hosin
    Vaferi, Behzad
    Hosseini, Saleh
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (51) : 21782 - 21793
  • [9] Machine Learning methods in predicting electroencephalogram
    Lin, Zizhao
    Ma, Yijiang
    [J]. INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [10] Application of machine learning methods in predicting schizophrenia and bipolar disorders: A systematic review
    Montazeri, Mahdieh
    Montazeri, Mitra
    Bahaadinbeigy, Kambiz
    Montazeri, Mohadeseh
    Afraz, Ali
    [J]. HEALTH SCIENCE REPORTS, 2023, 6 (01)