The Finite Projective Plane and the 5-Uniform Linear Intersecting Hypergraphs with Domination Number Four

被引:0
|
作者
Shan Li
Liying Kang
Erfang Shan
Yanxia Dong
机构
[1] Shanghai University,Department of Mathematics
[2] Shanghai University,School of Management
[3] Shanghai University of International Business and Economics,undefined
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Hypergraph; Matching; Domination; Projective plane; Linear hypergraph; Intersecting hypergraph; 05C65; 05C69; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
The matching number α′(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha '(H)$$\end{document} of a hypergraph H is the size of a largest matching in H, where a matching is a set of pairwise disjoint edges in H. A dominating set in H is a subset D of vertices of H such that for every v∈V(H)\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(H)\setminus D$$\end{document} there exists u∈D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in D$$\end{document} such that u and v lie in an edge of H, and the domination number of H, denoted by γ(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (H)$$\end{document}, is the minimum cardinality of a dominating set in H. It was shown that a Ryser-like inequality γ(H)≤(r-1)α′(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (H)\le (r-1)\alpha '(H)$$\end{document} holds for hypergraphs H of rank r. In particular, for intersecting hypergraphs H of rank r, γ(H)≤r-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (H)\le r-1$$\end{document}, since α′(H)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha '(H)=1$$\end{document}. The linear intersecting hypergraphs of rank 2≤r≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le r\le 4$$\end{document} achieving the equality γ(H)=r-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (H)=r-1$$\end{document} have been characterized. In this paper we show that all the 5-uniform linear intersecting hypergraphs H with equality γ(H)=r-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (H)=r-1$$\end{document} are generated by the finite projective plane of order three.
引用
下载
收藏
页码:931 / 945
页数:14
相关论文
共 36 条
  • [1] The Finite Projective Plane and the 5-Uniform Linear Intersecting Hypergraphs with Domination Number Four
    Li, Shan
    Kang, Liying
    Shan, Erfang
    Dong, Yanxia
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 931 - 945
  • [2] Independence in 5-uniform hypergraphs
    Eustis, Alex
    Henning, Michael A.
    Yeo, Anders
    DISCRETE MATHEMATICS, 2016, 339 (02) : 1004 - 1027
  • [3] Covers in 5-uniform intersecting families with covering number three
    Furuya, Michitaka
    Takatou, Masanori
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 55 : 249 - 262
  • [4] TRANSVERSALS IN 5-UNIFORM HYPERGRAPHS AND TOTAL DOMINATION IN GRAPHS WITH MINIMUM DEGREE FIVE
    Dorfling, Michael
    Henning, Michael A.
    QUAESTIONES MATHEMATICAE, 2015, 38 (02) : 155 - 180
  • [5] The spectral radius and domination number in linear uniform hypergraphs
    Kang, Liying
    Zhang, Wei
    Shan, Erfang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 42 (03) : 581 - 592
  • [6] The spectral radius and domination number in linear uniform hypergraphs
    Liying Kang
    Wei Zhang
    Erfang Shan
    Journal of Combinatorial Optimization, 2021, 42 : 581 - 592
  • [7] The Maximum Lagrangian of 5-uniform Hypergraphs without Containing Two Edges Intersecting at a Vertex
    Biao WU
    Yue Jian PENG
    Acta Mathematica Sinica,English Series, 2022, (05) : 877 - 889
  • [8] The Maximum Lagrangian of 5-uniform Hypergraphs without Containing Two Edges Intersecting at a Vertex
    Wu, Biao
    Peng, Yue Jian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (05) : 877 - 889
  • [9] The Maximum Lagrangian of 5-uniform Hypergraphs without Containing Two Edges Intersecting at a Vertex
    Biao Wu
    Yue Jian Peng
    Acta Mathematica Sinica, English Series, 2022, 38 : 877 - 889
  • [10] FINITE PROJECTIVE SPACES AND INTERSECTING HYPERGRAPHS
    FRANKL, P
    FUREDI, Z
    COMBINATORICA, 1986, 6 (04) : 335 - 354