A Second-Order Exponential Time Differencing Multi-step Energy Stable Scheme for Swift–Hohenberg Equation with Quadratic–Cubic Nonlinear Term

被引:0
|
作者
Ming Cui
Yiyi Niu
Zhen Xu
机构
[1] Beijing University of Technology,Faculty of Science
来源
关键词
Swift–Hohenberg equation; Exponential time differencing; Stabilization; Second order scheme; Error analysis; 65M12; 65M70; 35K55; 35G25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we propose and analyze an energy stable, linear, second-order in time, exponential time differencing multi-step (ETD-MS) method for solving the Swift–Hohenberg equation with quadratic–cubic nonlinear term. The ETD-based explicit multi-step approximations and Fourier collocation spectral method are applied in time integration and spatial discretization of the corresponding equation, respectively. In particular, a second-order artificial stabilizing term, in the form of Aτ2∂(Δ2+1)u∂t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\tau ^2\frac{\partial (\varDelta ^2+1)u}{\partial t}$$\end{document}, is added to ensure the energy stability. The long-time unconditional energy stability of the algorithm is established rigorously. In addition, error estimates in ℓ∞(0,T;ℓ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^\infty (0,T;\ell ^2)$$\end{document}-norm are derived, with a careful estimate of the aliasing error. Numerical examples are carried out to verify the theoretical results. The long-time simulation demonstrates the stability and the efficiency of the numerical method.
引用
收藏
相关论文
共 50 条