The use of quasi-concave value functions in MCDM: some theoretical results

被引:0
|
作者
Pekka Korhonen
Majid Soleimani-damaneh
Jyrki Wallenius
机构
[1] Aalto University,School of Business, Department of Information and Service Economy
[2] University of Tehran,School of Mathematics, Statistics and Computer Science, College of Science
[3] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
关键词
Multiple criteria analysis; Convex-cone dominance; Quasi-concavity; Linear programming;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we answer three important questions about the convex-cone dominance approach in Multiple Criteria Decision Making with a finite number of alternatives. These questions concern the existence of value (utility) functions and the consistency of the preference information with special forms of this function.
引用
收藏
页码:367 / 375
页数:8
相关论文
共 50 条
  • [1] The use of quasi-concave value functions in MCDM: some theoretical results
    Korhonen, Pekka
    Soleimani-damaneh, Majid
    Wallenius, Jyrki
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2017, 86 (02) : 367 - 375
  • [2] A CHARACTERIZATION OF QUASI-CONCAVE FUNCTIONS
    OTANI, K
    [J]. JOURNAL OF ECONOMIC THEORY, 1983, 31 (01) : 194 - 196
  • [3] Valuations on the Space of Quasi-Concave Functions
    Colesanti, Andrea
    Lombardi, Nico
    [J]. GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2017, 2169 : 71 - 105
  • [4] Characterization of uniformly quasi-concave functions
    Kopa, Milos
    Lachout, Petr
    [J]. PROCEEDINGS OF 30TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS, PTS I AND II, 2012, : 449 - 454
  • [5] QUASI-CONCAVE (COMPOSITION) FUNCTIONS WITH NONCONCAVE ARGUMENT FUNCTIONS
    FABELLA, RV
    [J]. INTERNATIONAL ECONOMIC REVIEW, 1992, 33 (02) : 473 - 477
  • [6] Translation invariant valuations on quasi-concave functions
    Colesanti, Andrea
    Lombardi, Nico
    Parapatits, Lukas
    [J]. STUDIA MATHEMATICA, 2018, 243 (01) : 79 - 99
  • [7] Quasi-concave functions on meet-semilattices
    Kempner, Yulia
    Muchnik, Ilya
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (04) : 492 - 499
  • [8] Quasi-concave functions and convex convergence to infinity
    Beer, G
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (01) : 81 - 94
  • [9] Monotone linkage clustering and quasi-concave set functions
    Kempner, Y
    Mirkin, B
    Muchnik, I
    [J]. APPLIED MATHEMATICS LETTERS, 1997, 10 (04) : 19 - 24
  • [10] Duality between quasi-concave functions and monotone linkage functions
    Kempner, Yulia
    Levit, Vadim E.
    [J]. DISCRETE MATHEMATICS, 2010, 310 (22) : 3211 - 3218