共 50 条
A Quantitative Version of the Non-Abelian Idempotent Theorem
被引:0
|作者:
Tom Sanders
机构:
[1] University of Cambridge,Department of Pure Mathematics and Mathematical Statistics
来源:
关键词:
Fourier analysis;
Freĭman;
idempotent theorem;
non-abelian groups;
43A35;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Suppose that G is a finite group and f is a complex-valued function on G. f induces a (left) convolution operator from L2(G) to L2(G) by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${g \mapsto f \ast g}$$\end{document} where\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f \ast g(z) := \mathbb{E}_{xy=z}f(x)g(y)\,\, {\rm for\,\,all} \, z \in G.$$\end{document} This operator is a linear map L2(G) → L2(G) between two finite dimensional Hilbert spaces, and so it has well-defined singular values; we write || f ||A(G) for their sum.
引用
收藏
页码:141 / 221
页数:80
相关论文