In this paper, we consider the following problem: what is the minimum number of affine hyperplanes in ℝn, such that all the vertices of 0→\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overrightarrow 0$$\end{document} are covered at least k times, and {0,1}n\{0→}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\left\{{0,1} \right\}^n}\backslash \left\{{\overrightarrow 0} \right\}$$\end{document} is uncovered? The k = 1 case is the well-known Alon-Füredi theorem which says a minimum of n affine hyperplanes is required, which follows from the Combinatorial Nullstellensatz.
机构:
Dipartimentodi Matematica,Seconda Università di Napoli,Via Vivaldi 43,81100 Caserta,ItaliaDipartimentodi Matematica,Seconda Università di Napoli,Via Vivaldi 43,81100 Caserta,Italia
G.DI MAIO
Ljubisa D.R.KOCINAC
论文数: 0引用数: 0
h-index: 0
机构:
Faculty of Sciences and Mathematics,University of Nis,Visegradska 33,18000 Nis,SerbiaDipartimentodi Matematica,Seconda Università di Napoli,Via Vivaldi 43,81100 Caserta,Italia
Ljubisa D.R.KOCINAC
Enrico MECCARIELLO
论文数: 0引用数: 0
h-index: 0
机构:
Facoltàdi Ingegneria,Università del Sannio,Palazzo B.Lucarelli,Piazza Roma,82100 Benevento,ItaliaDipartimentodi Matematica,Seconda Università di Napoli,Via Vivaldi 43,81100 Caserta,Italia
机构:
Hunan First Normal Univ, Sch Math & Computat Sci, Changsha, Hunan, Peoples R ChinaHunan First Normal Univ, Sch Math & Computat Sci, Changsha, Hunan, Peoples R China
Chen, Jing
Fan, Genghua
论文数: 0引用数: 0
h-index: 0
机构:
Fuzhou Univ, Ctr Discrete Math, Fuzhou, Fujian, Peoples R ChinaHunan First Normal Univ, Sch Math & Computat Sci, Changsha, Hunan, Peoples R China
机构:
School of Mathematics and Computational Science, Hunan First Normal University, Changsha, Hunan, ChinaSchool of Mathematics and Computational Science, Hunan First Normal University, Changsha, Hunan, China
Chen, Jing
Fan, Genghua
论文数: 0引用数: 0
h-index: 0
机构:
Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian, ChinaSchool of Mathematics and Computational Science, Hunan First Normal University, Changsha, Hunan, China