Technical review on coaxial deep borehole heat exchanger

被引:0
|
作者
Haohua Chen
Ingrid Tomac
机构
[1] University of California San Diego,Department of Structural Engineering
关键词
Deep borehole heat exchanger; Geothermal energy; Heat transfer; Renewable energy;
D O I
暂无
中图分类号
学科分类号
摘要
This review paper summarizes recent developments regarding geothermal exploitation using coaxial deep borehole heat exchangers (DBHE). Specifically, this study focuses on field tests, analytical and semi-analytical approaches, and numerical simulations. First, field tests and applications of coaxial DBHE are summarized and future work for the field tests is suggested. Then, the ongoing analytical and numerical modeling approaches on coaxial DBHE are evaluated regarding the capability and incapability of describing physical behaviors. Lastly, key factors for the design of coaxial DBHE are summarized and discussed based on collected results. Regarding field tests, future work should focus more on (1) long-term performance; (2) effect of groundwater flow within formation and fractures; (3) technology for larger diameter boreholes; (4) new and cheap materials for insulated inner pipe; (5) treatment of fluid, pipe wall, and different working fluid; (6) economic analysis of coaxial DBHE-based geothermal power plant. As for the analytical methods and numerical simulations, it is important to consider the dependence of fluid and formation properties on pressure and temperature. Besides, verification and calibration of empirical models for working fluids other than water such as CO2 should be performed based on laboratory and field tests. Different borehole properties and pump parameters should be optimized to obtain the maximum thermal power of a coaxial DBHE, and an insulated inner pipe is recommended by many researchers. An intermittent working pattern of the DBHE could be more realistic when modeling a DBHE. To further improve the performance of coaxial DBHE, continuous research to enhance heat transfer and working fluid performance is still important.
引用
收藏
相关论文
共 50 条
  • [1] Technical review on coaxial deep borehole heat exchanger
    Chen, Haohua
    Tomac, Ingrid
    [J]. GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2023, 9 (01)
  • [2] Study on the Influence of Borehole Heat Capacity on Deep Coaxial Borehole Heat Exchanger
    Wang, Changlong
    Fang, Han
    Wang, Xin
    Lu, Jinli
    Sun, Yanhong
    [J]. SUSTAINABILITY, 2022, 14 (04)
  • [3] Heat extraction model and characteristics of coaxial deep borehole heat exchanger
    Li, Ji
    Xu, Wei
    Li, Jianfeng
    Huang, Shuai
    Li, Zhao
    Qiao, Biao
    Yang, Chun
    Sun, Deyu
    Zhang, Guangqiu
    [J]. RENEWABLE ENERGY, 2021, 169 : 738 - 751
  • [4] Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis
    Luo, Yongqaing
    Guo, Hongshan
    Meggers, Forrest
    Zhang, Ling
    [J]. ENERGY, 2019, 185 : 1298 - 1313
  • [5] Transient heat transfer in a coaxial borehole heat exchanger
    Beier, Richard A.
    Acuna, Jose
    Mogensen, Paine
    Palm, Bjorn
    [J]. GEOTHERMICS, 2014, 51 : 470 - 482
  • [6] EVALUATION OF A COAXIAL BOREHOLE HEAT EXCHANGER PROTOTYPE
    Acuna, Jose
    Mogensen, Palne
    Palm, Bjorn
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 4: HEAT TRANSFER MEASUREMENT TECHNIQUES, HEAT TRANSFER EQUIPMENT, THERMOELECTRICS, 2010, : 343 - 350
  • [7] Measurements and Design Calculations for a Deep Coaxial Borehole Heat Exchanger in Aachen, Germany
    Dijkshoorn, Lydia
    Speer, Simon
    Pechnig, Renate
    [J]. INTERNATIONAL JOURNAL OF GEOPHYSICS, 2013, 2013
  • [8] Numerical study on the heat performance of enhanced coaxial borehole heat exchanger and double U borehole heat exchanger
    Chen, Ke
    Zheng, Jia
    Li, Juan
    Shao, Jingli
    Zhang, Qiulan
    [J]. APPLIED THERMAL ENGINEERING, 2022, 203
  • [9] Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system
    Song, Xianzhi
    Wang, Gaosheng
    Shi, Yu
    Li, Ruixia
    Xu, Zhengming
    Zheng, Rui
    Wang, Yu
    Li, Jiacheng
    [J]. ENERGY, 2018, 164 : 1298 - 1310
  • [10] Transient numerical model for a coaxial borehole heat exchanger with the effect of borehole heat capacity
    Yang, Xinyu
    Wang, Guodong
    Wang, Qingsheng
    Chen, Changqi
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (12) : 6551 - 6560