Experimental and numerical comparison of heat accumulation during laser powder bed fusion of 316L stainless steel

被引:0
|
作者
Mohsin Ali Chaudry
Gunther Mohr
Kai Hilgenberg
机构
[1] Bundesanstalt für Materialforschung und -prüfung,9.6 Additive Fertigung metallischer Komponenten
[2] Technische Universität Berlin,Institute of Machine Tools and Factory Management
来源
关键词
Laser powder bed fusion; Finite element method; Heat accumulation; Inter-layer time;
D O I
暂无
中图分类号
学科分类号
摘要
Heat accumulation during laser powder bed fusion (LPBF) of metallic build parts can adversely affect their microstructure and mechanical properties. To study the heat accumulation during 316L steel based parts manufactured by LPBF, a finite element method (FEM) based numerical study is carried out. For the investigation, a computationally efficient FEM based model, where the whole layer is simultaneously exposed to a heat source, is used. The simulation results are compared with experimental results to validate the numerical model. While considering different influencing factors such as volumetric energy density (VED) and inter-layer time (ILT), the FEM model is shown to successfully simulate the process of heat accumulation during LPBF based manufacturing of a cuboidal shaped geometry. It is shown that ILT and VED have a significant effect on heat accumulation. The validated numerical model provides a good basis for the optimization of processing parameters and geometries for a future investigation of a reduction of heat accumulation effects. Furthermore, it can be used to quickly provide preheating boundary conditions for detailed investigations by different model approaches at a finer scale for future studies.
引用
收藏
页码:1071 / 1083
页数:12
相关论文
共 50 条
  • [1] Experimental and numerical comparison of heat accumulation during laser powder bed fusion of 316L stainless steel
    Chaudry, Mohsin Ali
    Mohr, Gunther
    Hilgenberg, Kai
    PROGRESS IN ADDITIVE MANUFACTURING, 2022, 7 (05) : 1071 - 1083
  • [2] Numerical model of heat transfer during laser powder bed fusion of 316L stainless steel
    Cox, Bryce
    Ghayoor, Milad
    Doyle, Ryan P.
    Pasebani, Somayeh
    Gess, Joshua
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (9-10): : 5715 - 5725
  • [3] Numerical model of heat transfer during laser powder bed fusion of 316L stainless steel
    Bryce Cox
    Milad Ghayoor
    Ryan P. Doyle
    Somayeh Pasebani
    Joshua Gess
    The International Journal of Advanced Manufacturing Technology, 2022, 119 : 5715 - 5725
  • [4] Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel
    Metalnikov, Polina
    Ben-Hamu, Guy
    Eliezer, Dan
    METALS, 2022, 12 (10)
  • [5] Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L
    Kurdi, Abdulaziz
    Tabbakh, Thamer
    Basak, Animesh Kumar
    MATERIALS, 2023, 16 (17)
  • [6] Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process
    Kascak, Lubos
    Varga, Jan
    Bidulska, Jana
    Bidulsky, Robert
    MATERIALS, 2023, 16 (24)
  • [7] Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel
    Pitrmuc, Zdenek
    Simota, Jan
    Beranek, Libor
    Mikes, Petr
    Andronov, Vladislav
    Sommer, Jiri
    Holesovsky, Frantisek
    MATERIALS, 2022, 15 (02)
  • [8] Development of crystallographic misorientation in laser powder bed fusion 316L stainless steel
    Biswas, Prosenjit
    Ma, Ji
    ADDITIVE MANUFACTURING, 2024, 80
  • [9] Ultrasonic nondestructive evaluation of laser powder bed fusion 316L stainless steel
    Kim, Changgong
    Yin, Houshang
    Shmatok, Andrii
    Prorok, Barton C.
    Lou, Xiaoyuan
    Matlack, Kathryn H.
    ADDITIVE MANUFACTURING, 2021, 38
  • [10] Fuzzy process optimization of laser powder bed fusion of 316L stainless steel
    Ponticelli, Gennaro Salvatore
    Venettacci, Simone
    Giannini, Oliviero
    Guarino, Stefano
    Horn, Matthias
    PROGRESS IN ADDITIVE MANUFACTURING, 2023, 8 (03) : 437 - 458