Brownian Motion

被引:0
|
作者
B. V. Rao
机构
[1] Chennai Mathematical Institute,
来源
Resonance | 2021年 / 26卷
关键词
Brownian motion; heat equation; Kolmogorov’s formulation of probability; random walk; Wiener integral; stochastic differential equations; financial mathematics;
D O I
暂无
中图分类号
学科分类号
摘要
This article explains the history and mathematics of Brownian motion.
引用
收藏
页码:89 / 104
页数:15
相关论文
共 50 条
  • [1] Brownian motion reflected on Brownian motion
    Burdzy, K
    Nualart, D
    PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 471 - 493
  • [2] Brownian motion reflected on Brownian motion
    Krzysztof Burdzy
    David Nualart
    Probability Theory and Related Fields, 2002, 122 : 471 - 493
  • [3] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [4] Brownian motion in a Brownian crack
    Burdzy, K
    Khoshnevisan, D
    ANNALS OF APPLIED PROBABILITY, 1998, 8 (03): : 708 - 748
  • [5] Brownian Motion
    Sibley, Shalamar
    MIDWEST QUARTERLY-A JOURNAL OF CONTEMPORARY THOUGHT, 2014, 55 (03): : 75 - 75
  • [6] Brownian motion
    Parisi, G
    NATURE, 2005, 433 (7023) : 221 - 221
  • [7] Brownian Motion
    Rao, B. V.
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2021, 26 (01): : 89 - 104
  • [8] BROWNIAN MOTION
    HARRISON, W
    CHEMISTRY & INDUSTRY, 1947, (16) : 214 - 214
  • [9] On the Brownian Motion
    Ornstein, LS
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1919, 21 (1/5): : 96 - 108
  • [10] A BROWNIAN MOTION
    WERGELAN.H
    PHYSICA NORVEGICA, 1967, 2 (02): : 134 - &