random search;
global optimization;
stochastic optimization;
estimate of convergence rate;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The convergence rate of the Markov random search algorithms designed for finding the extremizer of a function is investigated. It is shown that, for a wide class of random search methods that possess a natural symmetry property, the number of evaluations of the objective function needed to find the extremizer accurate to cannot grow slower than |ln ɛ|.
机构:
Vologda State Univ, Lenina Str 15, Vologda 160000, Russia
Russian Acad Sci, Fed Res Ctr Informat & Control, Inst Informat Problems, Moscow, Russia
Russian Acad Sci, Vologda Res Ctr, Vologda, RussiaVologda State Univ, Lenina Str 15, Vologda 160000, Russia
Zeifman, A. I.
Korolev, V. Yu.
论文数: 0引用数: 0
h-index: 0
机构:
Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow, Russia
Hangzhou Dianzi Univ, Hangzhou, Zhejiang, Peoples R ChinaVologda State Univ, Lenina Str 15, Vologda 160000, Russia
Korolev, V. Yu.
Satin, Ya. A.
论文数: 0引用数: 0
h-index: 0
机构:
Vologda State Univ, Lenina Str 15, Vologda 160000, RussiaVologda State Univ, Lenina Str 15, Vologda 160000, Russia
Satin, Ya. A.
Kiseleva, K. M.
论文数: 0引用数: 0
h-index: 0
机构:
Vologda State Univ, Peoples Friendship Univ Russia RUDN Univ, Vologda, Peoples R ChinaVologda State Univ, Lenina Str 15, Vologda 160000, Russia