On the Colmez conjecture for non-abelian CM fields

被引:0
|
作者
Adrian Barquero-Sanchez
Riad Masri
机构
[1] Universidad de Costa Rica,Escuela de Matemática
[2] Texas A&M University,Department of Mathematics, Mailstop 3368
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Colmez conjecture relates the Faltings height of an abelian variety with complex multiplication by the ring of integers of a CM field E to logarithmic derivatives of Artin L-functions at s=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=0$$\end{document}. In this paper, we prove that if F is any fixed totally real number field of degree [F:Q]≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[F:\mathbb {Q}] \ge 3$$\end{document}, then there are infinitely many effective, “positive density” sets of CM extensions E / F such that E/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E/\mathbb {Q}$$\end{document} is non-abelian and the Colmez conjecture is true for E. Moreover, these CM extensions are explicitly constructed to be ramified at arbitrary prescribed sets of prime ideals of F. We also prove that the Colmez conjecture is true for a generic class of non-abelian CM fields called Weyl CM fields, and use this to develop an arithmetic statistics approach to the Colmez conjecture based on counting CM fields of fixed degree and bounded discriminant. We illustrate these results by evaluating the Faltings height of the Jacobian of a genus 2 hyperelliptic curve with complex multiplication by a non-abelian quartic CM field in terms of the Barnes double Gamma function at algebraic arguments. This can be viewed as an explicit non-abelian Chowla–Selberg formula. Our results rely crucially on an averaged version of the Colmez conjecture which was recently proved independently by Andreatta–Goren–Howard–Madapusi Pera and Yuan–Zhang.
引用
收藏
相关论文
共 50 条
  • [1] On the Colmez conjecture for non-abelian CM fields
    Barquero-Sanchez, Adrian
    Masri, Riad
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2018, 5
  • [2] CM fields of Dihedral type and the Colmez conjecture
    Tonghai Yang
    Hongbo Yin
    manuscripta mathematica, 2018, 156 : 1 - 22
  • [3] CM fields of Dihedral type and the Colmez conjecture
    Yang, Tonghai
    Yin, Hongbo
    MANUSCRIPTA MATHEMATICA, 2018, 156 (1-2) : 1 - 22
  • [4] The distribution of G-Weyl CM fields and the Colmez conjecture
    Barquero-Sanchez, Adrian
    Masri, Riad
    Thorne, Frank
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2023, 10 (02)
  • [5] The distribution of G-Weyl CM fields and the Colmez conjecture
    Adrian Barquero-Sanchez
    Riad Masri
    Frank Thorne
    Research in the Mathematical Sciences, 2023, 10
  • [6] Unitary PSL2 CM fields and the Colmez conjecture
    Parenti, Solly
    JOURNAL OF NUMBER THEORY, 2018, 193 : 336 - 356
  • [7] On non-abelian Brumer and Brumer-Stark conjecture for monomial CM-extensions
    Nomura, Jiro
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (04) : 817 - 848
  • [8] Non-Abelian gauge fields
    Gerbier, Fabrice
    Goldman, Nathan
    Lewenstein, Maciej
    Sengstock, Klaus
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (13)
  • [9] Non-Abelian bosonization and Haldane's conjecture
    Cabra, DC
    Pujol, P
    von Reichenbach, C
    PHYSICAL REVIEW B, 1998, 58 (01) : 65 - 68
  • [10] DUALITY TRANSFORMATIONS OF ABELIAN AND NON-ABELIAN GAUGE FIELDS
    DESER, S
    TEITELBOIM, C
    PHYSICAL REVIEW D, 1976, 13 (06): : 1592 - 1597