Complexity bound of trust-region methods for convex smooth unconstrained multiobjective optimization

被引:0
|
作者
R. Garmanjani
机构
[1] FCT NOVA,Center for Mathematics and Applications (NovaMath)
来源
Optimization Letters | 2023年 / 17卷
关键词
Trust-region methods; Multiobjective optimization; Worst-case complexity; Convex smooth unconstrained;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the worst-case complexity of trust-region methods for solving unconstrained smooth multiobjective optimization problems. We particularly focus on the method proposed by Villacorta et al. [J Optim Theory Appl 160:865–889, 2014]. When the component functions are convex (respectively strongly convex), we will derive a complexity bound of O(ϵ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\epsilon ^{-1})$$\end{document} (respectively O(logϵ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\log \epsilon ^{-1})$$\end{document}) for driving some criticality measure below some given positive ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}. The derived complexity bounds recover those of classical trust-region methods for solving (strongly) convex smooth unconstrained single-objective problems.
引用
收藏
页码:1161 / 1179
页数:18
相关论文
共 50 条
  • [1] Complexity bound of trust-region methods for convex smooth unconstrained multiobjective optimization
    Garmanjani, R.
    [J]. OPTIMIZATION LETTERS, 2023, 17 (05) : 1161 - 1179
  • [2] A variant of trust-region methods for unconstrained optimization
    Wang, Fusheng
    Zhang, Kecun
    Wang, Chuanlong
    Wang, Li
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) : 297 - 307
  • [3] On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization
    Grapiglia, Geovani N.
    Yuan, Jinyun
    Yuan, Ya-xiang
    [J]. MATHEMATICAL PROGRAMMING, 2015, 152 (1-2) : 491 - 520
  • [4] On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization
    Geovani N. Grapiglia
    Jinyun Yuan
    Ya-xiang Yuan
    [J]. Mathematical Programming, 2015, 152 : 491 - 520
  • [5] Adaptive trust-region algorithms for unconstrained optimization
    Rezapour, Mostafa
    Asaki, Thomas J.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2021, 36 (05): : 1059 - 1081
  • [6] Two globally convergent nonmonotone trust-region methods for unconstrained optimization
    Ahookhosh M.
    Ghaderi S.
    [J]. Journal of Applied Mathematics and Computing, 2016, 50 (1-2) : 529 - 555
  • [7] A retrospective trust-region method for unconstrained optimization
    Fabian Bastin
    Vincent Malmedy
    Mélodie Mouffe
    Philippe L. Toint
    Dimitri Tomanos
    [J]. Mathematical Programming, 2010, 123 : 395 - 418
  • [8] A retrospective trust-region method for unconstrained optimization
    Bastin, Fabian
    Malmedy, Vincent
    Mouffe, Melodie
    Toint, Philippe L.
    Tomanos, Dimitri
    [J]. MATHEMATICAL PROGRAMMING, 2010, 123 (02) : 395 - 418
  • [9] A TRUST-REGION ALGORITHM FOR HETEROGENEOUS MULTIOBJECTIVE OPTIMIZATION
    Thomann, Jana
    Eichfelder, Gabriele
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1017 - 1047
  • [10] A trust-region method with a conic model for unconstrained optimization
    Qu, Shao-Jian
    Jiang, Su-Da
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (15) : 1780 - 1808