The pseudospectra of linear operator pencils in a Hilbert space

被引:0
|
作者
Aymen Ammar
Ameni Bouchekoua
Aref Jeribi
机构
[1] University of Sfax,Department of Mathematics, Faculty of Sciences of Sfax
来源
Afrika Matematika | 2023年 / 34卷
关键词
Pseudospectra; Spectrum; Linear operator pencil; Hilbert space; 47A10;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to introduce and study some basic proprieties of the pseudospectra of linear operator pencils (or S-pseudospectra of linear operators) defined by non-strict inequality in a Hilbert space. Inspired by Böttcher’s result (J Integral Equ Appl 6(3):267–301, 1994), we show that the S-resolvent of a bounded operator acting in Hilbert space cannot have constant norm on any open set where S is not invertible. After that, we characterize the S-pseudospectrum of bounded linear operator by means the S-spectra of all perturbed operators with perturbations that have norms strictly less than ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] The pseudospectra of linear operator pencils in a Hilbert space
    Ammar, Aymen
    Bouchekoua, Ameni
    Jeribi, Aref
    AFRIKA MATEMATIKA, 2023, 34 (04)
  • [2] INVERSION OF OPERATOR PENCILS ON HILBERT SPACE
    Albrecht, Amie
    Howlett, Phil
    Verma, Geetika
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (02) : 145 - 176
  • [3] On bounds for spectra of operator pencils in a Hilbert space
    Gil, MI
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2003, 19 (02) : 313 - 326
  • [4] On Bounds for Spectra of Operator Pencils in a Hilbert Space
    Michael Iosif Gil'
    Acta Mathematica Sinica, 2003, 19 : 313 - 326
  • [5] Condition pseudospectra of multivalued linear operator pencils on non-Archimedean Banach spaces
    Ettayb, J.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 3299 - 3309
  • [6] A characterization of S-pseudospectra of linear operators in a Hilbert space
    Ammar, Aymen
    Bouchekoua, Ameni
    Jeribi, Aref
    FILOMAT, 2023, 37 (05) : 1331 - 1339
  • [7] Pseudospectra of linear matrix pencils by block diagonalization
    P.-F. Lavallée
    M. Sadkane
    Computing, 1998, 60 : 133 - 156
  • [8] Pseudospectra of linear matrix pencils by block diagonalization
    Lavallee, PF
    Sadkane, M
    COMPUTING, 1998, 60 (02) : 133 - 156
  • [9] Approximation of Pseudospectra on a Hilbert Space
    Schmidt, Torge
    Lindner, Marko
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [10] STRONGLY DEFINITIZABLE LINEAR PENCILS IN HILBERT-SPACE
    LANCASTER, P
    SHKALIKOV, A
    YE, Q
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1993, 17 (03) : 338 - 360