Conformally flat contact metric manifolds

被引:0
|
作者
Ghosh A. [1 ]
Koufogiorgos T. [3 ]
Sharma R. [2 ]
机构
[1] Department of Pure Mathematics, University of Calcutta
[2] Department of Mathematics, University of New Haven, West Haven
[3] Department of Mathematics, University of Ioannina
关键词
Calabi-Yau manifolds; Conformally flat; Contact metric manifolds; Kaehler Einstein;
D O I
10.1007/PL00000994
中图分类号
学科分类号
摘要
A couple of classes of conformally flat contact metric manifolds have been classified. Conformally flat contact manifolds have been characterized as hypersurfaces of 4-dimensional Kaehler Einstein (in particular, Calabi-Yau) manifolds. © Birkhäuser Verlag, Basel, 2001.
引用
收藏
页码:66 / 76
页数:10
相关论文
共 50 条
  • [1] On conformally flat contact metric manifolds
    Gouli-Andreou F.
    Tsolakidou N.
    [J]. Journal of Geometry, 2004, 79 (1-2) : 75 - 88
  • [2] On Conformally Flat Almost Contact Metric Manifolds
    David E. Blair
    Handan Yıldırım
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 2759 - 2770
  • [3] Conformally flat quasi contact metric manifolds
    Malek, Fereshteh
    Hojati, Rezvan
    [J]. JOURNAL OF GEOMETRY, 2024, 115 (02)
  • [4] On Conformally Flat Almost Contact Metric Manifolds
    Blair, David E.
    Yildirim, Handan
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 2759 - 2770
  • [5] On xi-conformally flat contact metric manifolds
    Zhen, G
    Cabrerizo, JL
    Fernandez, LM
    Fernandez, M
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (06): : 725 - 734
  • [6] A Class of Conformally flat Contact Metric 3-Manifolds
    Florence Gouli-Andreou
    Ramesh Sharma
    [J]. Results in Mathematics, 2003, 43 (1-2) : 114 - 120
  • [7] Two classes of conformally flat contact metric 3-manifolds
    Gouli-Andreou F.
    Xenos P.J.
    [J]. Journal of Geometry, 1999, 64 (1-2) : 80 - 88
  • [8] CONFORMALLY FLAT CONTACT THREE-MANIFOLDS
    Cho, Jong Taek
    Yang, Dong-Hee
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (02) : 177 - 189
  • [9] ON A CLASS OF ALMOST CONTACT METRIC MANIFOLDS CONFORMALLY RELATED TO COSYMPLECTIC MANIFOLDS
    ALEXIEV, VA
    GANCHEV, GT
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1988, 41 (10): : 21 - 24
  • [10] Integrability of scalar curvature and normal metric on conformally flat manifolds
    Wang, Shengwen
    Wang, Yi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (04) : 1353 - 1370