Minimal dynamical systems on the product of the Cantor set and the circle II

被引:0
|
作者
Huaxin Lin
Hiroki Matui
机构
[1] East China Normal University,Department of Mathematics
[2] University of Oregon,Department of Mathematics
[3] Chiba University,Graduate School of Science and Technology
来源
Selecta Mathematica | 2006年 / 12卷
关键词
Primary 46L55; Secondary 54H20; -theory of C; -algebras; minimal dynamical systems;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be the Cantor set and φ be a minimal homeomorphism on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$X \times \mathbb{T}$$ \end{document}. We show that the crossed product C*-algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C*(X \times \mathbb{T}, \varphi)$$ \end{document} is a simple A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{T}$$ \end{document}-algebra provided that the associated cocycle takes its values in rotations on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{T}$$ \end{document}. Given two minimal systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(X \times \mathbb{T}, \varphi)$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(Y \times \mathbb{T}, \psi)$$ \end{document} such that φ and ψ arise from cocycles with values in isometric homeomorphisms on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{T}$$ \end{document}, we show that two systems are approximately K-conjugate when they have the same K-theoretical information.
引用
收藏
相关论文
共 50 条