A set of invariant quality factors measuring the deviation from the Kerr metric

被引:0
|
作者
Alfonso García-Parrado Gómez-Lobo
José M. M. Senovilla
机构
[1] Universidade do Minho,Centro de Matemática
[2] Universidad del País Vasco,Física Teórica
来源
关键词
Kerr solution; Invariant characterization; Scalar quality factor;
D O I
暂无
中图分类号
学科分类号
摘要
A number of scalar invariant characterizations of the Kerr solution are presented. These characterizations come in the form of quality factors defined in stationary space-times. A quality factor is a scalar quantity varying in the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]$$\end{document} with the value 1 being attained if and only if the space-time is locally isometric to the Kerr solution. No knowledge of the Kerr solution is required to compute these quality factors. A number of different possibilities arise depending on whether the space-time is Ricci-flat and asymptotically flat, just Ricci-flat, or Ricci non-flat. In each situation a number of quality factors are constructed and analysed. The relevance of these quality factors is clear in any situation where one seeks a rigorous formulation of the statement that a space-time is “close” to the Kerr solution, such as: its non-linear stability problem, the asymptotic settlement of a radiating isolated system undergoing gravitational collapse, or in the formulation of some uniqueness results.
引用
收藏
页码:1095 / 1127
页数:32
相关论文
共 50 条
  • [1] A set of invariant quality factors measuring the deviation from the Kerr metric
    Gomez-Lobo, Alfonso Garcia-Parrado
    Senovilla, Jose M. M.
    GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (06) : 1095 - 1127
  • [2] Erratum to: A set of invariant quality factors measuring the deviation from the Kerr metric
    Alfonso García-Parrado Gómez-Lobo
    José M. M. Senovilla
    General Relativity and Gravitation, 2013, 45 (6) : 1129 - 1129
  • [3] Geometric Invariant Measuring the Deviation from Kerr Data
    Baeckdahl, Thomas
    Kroon, Juan A. Valiente
    PHYSICAL REVIEW LETTERS, 2010, 104 (23)
  • [4] On the Construction of a Geometric Invariant Measuring the Deviation from Kerr Data
    Baeckdahl, Thomas
    Kroon, Juan A. Valiente
    ANNALES HENRI POINCARE, 2010, 11 (07): : 1225 - 1271
  • [5] On the Construction of a Geometric Invariant Measuring the Deviation from Kerr Data
    Thomas Bäckdahl
    Juan A. Valiente Kroon
    Annales Henri Poincaré, 2010, 11 : 1225 - 1271
  • [6] Equations of geodesic deviation and properties of tidal forces in the Kerr metric
    Rasulova, A. M.
    PROCEEDINGS OF THE 9TH ALEXANDER FRIEDMANN INTERNATIONAL SEMINAR ON GRAVITATION AND COSMOLOGY AND 3RD SATELLITE SYMPOSIUM ON THE CASIMIR EFFECT, 2016, 41
  • [7] ON THE METRIC-INVARIANT SET FOR MULTICRITERION OPTIMIZATION
    GORECKI, H
    FUKSA, S
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1991, 356 : 17 - 24
  • [8] PASSAGE FROM SCHWARZSCHILD METRIC TO KERR METRIC BY ANALYTIC CONTINUATION
    HOGAN, PA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1976, 32 (02): : 407 - 414
  • [9] ON CONSTRUCTION OF INVARIANT INFORMATION AND MEASURING SET-UPS
    PETROV, BN
    VIKTOROV, VA
    MISHENIN, VI
    DOKLADY AKADEMII NAUK SSSR, 1967, 177 (01): : 52 - &
  • [10] Generalised Error Functions from the Kerr Metric
    唐文林
    罗子人
    刘润球
    Chinese Physics Letters, 2016, 33 (03) : 16 - 20