Tunable Second Harmonic Generation in Antiferromagnetic Photonic Crystal with Graphene

被引:0
|
作者
Bai Lu
Sheng Zhou
Hong Liang
Qiang Zhang
Yutian Zhao
Shufang Fu
机构
[1] Harbin Normal University,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering
[2] Harbin University,Department of Physics
来源
关键词
Second harmonic generation; Graphene; Terahertz; Antiferromagnetic material; 75.50.Ee; 78.20.-e;
D O I
暂无
中图分类号
学科分类号
摘要
The generation of second harmonic (SH) in the structure (SiO2/MnF2/graphene)N/ZrO2 has been investigated with the matrix transfer method. The theoretical simulation results show that the effect of the graphene (Gr) on SH outputs above or below the surface is obvious. The SH outputs compared with the same structure only without the Gr layer are greatly enhanced, even about two or three orders at some special cases. Also, the position and intensity of the SH outputs can be effectively tuned by an external magnetic field. An optimal structure is determined through investigating the effect of the Gr positions and dielectrics on the SH outputs. Finally, a critical cycle unit N=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N = 8$$\end{document} is checked out, while the SH outputs begin to decrease once N>8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N > 8$$\end{document}. These interesting results may be helpful to the development and utilization of nonlinear devices in the THz frequency field.
引用
收藏
页码:321 / 339
页数:18
相关论文
共 50 条
  • [1] Tunable Second Harmonic Generation in Antiferromagnetic Photonic Crystal with Graphene
    Lu, Bai
    Zhou, Sheng
    Liang, Hong
    Zhang, Qiang
    Zhao, Yutian
    Fu, Shufang
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 201 (3-4) : 321 - 339
  • [2] Second harmonic generation in a photonic crystal
    Martorell, J
    Vilaseca, R
    Corbalan, R
    APPLIED PHYSICS LETTERS, 1997, 70 (06) : 702 - 704
  • [3] Second harmonic generation in a photonic crystal
    Martorell, Jordi
    Vilaseca, R.
    Trull, J.
    Corbalán, R.
    Optics and Photonics News, 1997, 8 (12): : 34 - 35
  • [4] Wavelength Tunable Second Harmonic Generation from Photonic Crystal Vertical Cavities
    Bai, Lu
    Qu, Lun
    Wu, Wei
    Gu, Zhidong
    Liu, Weiye
    Zhao, Xueqian
    Wang, Lishuan
    Cai, Wei
    Liu, Huasong
    Ren, Mengxin
    Xu, Jingjun
    ADVANCED OPTICAL MATERIALS, 2025, 13 (08):
  • [5] Tunable Second Harmonic Generation in Twisted Bilayer Graphene
    Yang, Fuyi
    Song, Wenshen
    Meng, Fanhao
    Luo, Fuchuan
    Lou, Shuai
    Lin, Shuren
    Gong, Zilun
    Cao, Jinhua
    Barnard, Edward S.
    Chan, Emory
    Yang, Li
    Yao, Jie
    MATTER, 2020, 3 (04) : 1361 - 1376
  • [6] Second harmonic generation in GaP photonic crystal waveguides
    Rivoire, Kelley
    Buckley, Sonia
    Hatami, Fariba
    Vuckovic, Jelena
    APPLIED PHYSICS LETTERS, 2011, 98 (26)
  • [7] Second harmonic generation in GaP photonic crystal waveguides
    Rivoire, Kelley
    Buckley, Sonia
    Hatami, Fariba
    Vuckovic, Jelena
    2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 381 - +
  • [8] Enhancement of second harmonic generation in GaN photonic crystal slab
    Torres, J
    ANNALES DE PHYSIQUE, 2004, 29 (05) : 1 - +
  • [9] Fano interpretation of second harmonic generation in a photonic crystal on a gel
    Babic, Ljubisa
    van Dellen, Louwrens T. H.
    de Dood, Michiel J. A.
    APPLIED PHYSICS LETTERS, 2012, 101 (26)
  • [10] Photonic-crystal waveguide for the second-harmonic generation
    G. M. Savchenko
    V. V. Dudelev
    V. V. Lundin
    A. V. Sakharov
    A. F. Tsatsul’nikov
    E. A. Kognovitskaya
    S. N. Losev
    A. G. Deryagin
    V. I. Kuchinskii
    N. S. Averkiev
    G. S. Sokolovskii
    Physics of the Solid State, 2017, 59 : 1702 - 1705