Boundedness and stabilization in the chemotaxis consumption model with signal-dependent motility

被引:0
|
作者
Xue Li
Liangchen Wang
Xu Pan
机构
[1] Chongqing University of Posts and Telecommunications,School of Science
关键词
Chemotaxis; Boundedness; Barge time behavior; Signal-dependent motility; 92C17; 35K55; 35B35; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the chemotaxis consumption model with signal-dependent motility ut=Δ(r(v)u)+μu(1-u),x∈Ω,t>0,vt=Δv-uv,x∈Ω,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{llll} u_t=\Delta (r(v)u)+\mu u(1-u),\quad &{}x\in \Omega ,\quad t>0,\\ v_t=\Delta v-uv,\quad &{}x\in \Omega ,\quad t>0 \end{array} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^n$$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}), the initial data u0∈C0(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0\in C^0({\overline{\Omega }})$$\end{document} and v0∈W1,∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_0\in W^{1,\infty }(\Omega )$$\end{document} are non-negative and the parameter μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document}. The motility function r(v) satisfies r(v)∈C3([0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r(v)\in C^3([0,\infty ))$$\end{document} with r(v)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r(v)>0$$\end{document} and r′(v)<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r'(v)<0$$\end{document} for all v≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\ge 0$$\end{document}. When n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} and μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document}, we proved that the system admits a globally bounded classical solution. When n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}, we establish the global existence and the boundedness of the solution if μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is suitably large. Moreover, by constructing Lyapunov functions it is shown that the global bounded classical solution will exponentially converge to (1, 0) as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Boundedness and stabilization in the chemotaxis consumption model with signal-dependent motility
    Li, Xue
    Wang, Liangchen
    Pan, Xu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [2] Boundedness of classical solutions to a chemotaxis consumption model with signal-dependent motility
    Baghaei, Khadijeh
    Khelghati, Ali
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [3] Global boundedness in a chemotaxis system with signal-dependent motility and indirect signal consumption
    Zheng, Meng
    Wang, Liangchen
    APPLIED MATHEMATICS LETTERS, 2023, 146
  • [4] Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility
    Jiang, Jie
    Laurencot, Philippe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 299 : 513 - 541
  • [5] Boundedness and large time behavior for a chemotaxis system with signal-dependent motility and indirect signal consumption
    Li, Dan
    Li, Zhongping
    Zhao, Jie
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 64
  • [6] Global boundedness in a nonlinear signal consumption chemotaxis system with signal-dependent motility and logistic source
    Zhao, Quanyong
    Wang, Jinrong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (02):
  • [7] GLOBAL BOUNDEDNESS IN A CHEMOTAXIS SYSTEM WITH SIGNAL-DEPENDENT MOTILITY AND INDIRECT SIGNAL CONSUMPTION AND LOGISTIC SOURCE
    Zheng, Meng
    Wang, Liangchen
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (06): : 1609 - 1624
  • [8] Global boundedness and large time behavior of solutions to a chemotaxis–consumption system with signal-dependent motility
    Dan Li
    Jie Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [9] BOUNDEDNESS AND STABILITY FOR AN INDIRECT SIGNAL ABSORPTION CHEMOTAXIS SYSTEM WITH SIGNAL-DEPENDENT MOTILITY
    Xu, Lu
    Mu, Chunlai
    Xin, Qiao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (02): : 945 - 964
  • [10] GLOBAL BOUNDEDNESS IN AN INDIRECT CHEMOTAXIS-CONSUMPTION MODEL WITH SIGNAL-DEPENDENT DEGENERATE DIFFUSION
    Wu, Chun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 2025 (01)