Modeling potential forest fire danger using modis data

被引:0
|
作者
Badarinath K.V.S. [1 ]
Madhavi Latha K. [1 ]
Kiran Chand T.R. [1 ]
Murthy M.S.R. [1 ]
机构
[1] Forestry and Ecology Division, National Remote Sensing Agency, Dept. of Space, Govt. of India, Balanagar
关键词
Normalize Difference Vegetation Index; Digital Elevation Model; Geographic Information System; Fuel Type; Open Forest;
D O I
10.1007/BF03030859
中图分类号
学科分类号
摘要
Generation of fire danger maps play a vital role in forest fire management like forest fire research, locating lookout towers, risk assessment and for various other simulation studies. The present study addresses remote sensing and GIS applications in generating fire danger maps for tropical deciduous forests. Fire danger variables such as fuel type, topography, temperature, and relative humidity have been used in modeling fire danger. Information on local climate patterns and past fire records has been used to derive fire frequency map of the study area. Intermediate indices were derived using multiple regressions, where fire frequency data is taken as dependent variable. Results indicate that forests near human settlements are more vulnerable to lorest fires.
引用
收藏
页码:343 / 350
页数:7
相关论文
共 50 条
  • [1] Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data
    Bisquert, Mar
    Caselles, Eduardo
    Manuel Sanchez, Juan
    Caselles, Vicente
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2012, 21 (08) : 1025 - 1029
  • [2] Synergy of GIS and Remote Sensing Data in Forest Fire Danger Modeling
    Hernandez-Leal, Pedro A.
    Gonzalez-Calvo, Alejandro
    Arbelo, Manuel
    Barreto, Africa
    Alonso-Benito, Alfonso
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2008, 1 (04) : 240 - 247
  • [3] Forest and Field Fire Search System Using MODIS Data
    Nunohiro, Eiji
    Katayama, Kei
    Mackin, Kenneth J.
    Park, Jong Geol
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2007, 11 (08) : 1043 - 1048
  • [4] Assessment of forest fire seasonality using MODIS fire potential: A time series approach
    Huesca, Margarita
    Litago, Javier
    Palacios-Orueta, Alicia
    Montes, Fernando
    Sebastian-Lopez, Ana
    Escribano, Paula
    AGRICULTURAL AND FOREST METEOROLOGY, 2009, 149 (11) : 1946 - 1955
  • [5] Monitoring for grassland and forest fire danger using remote sensing data
    Wang, LT
    Zhou, Y
    Wang, SX
    Chen, SR
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2095 - 2098
  • [6] Modeling Fire Danger in Galicia and Asturias ( Spain) from MODIS Images
    Bisquert, Mar
    Manuel Sanchez, Juan
    Caselles, Vicente
    REMOTE SENSING, 2014, 6 (01) : 540 - 554
  • [7] Using MODIS data to evaluate forest fire risk in East Asia area
    Zheng, Zeyu
    Nunohiro, Eiji
    Yamasaki, Kazuko
    Mackin, Kenneth J.
    Matsushita, Kotaro
    Park, Jong Geol
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2010, 13 (3B): : 1055 - 1058
  • [8] A NEW TECHNIQUE FOR VISUALIZATION OF FOREST FIRE SMOKE PLUMES USING MODIS DATA
    Nagatani, Izumi
    Kudoh, Jun-ichi
    Kawano, Koichi
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 2380 - 2383
  • [9] Modeling human-caused forest fire ignition for assessing forest fire danger in Austria
    Arndt, Natalie
    Vacik, Harald
    Koch, Valerie
    Arpaci, Alexander
    Gossow, Hartnut
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2013, 6 : 315 - 325
  • [10] Assessment of fire danger vulnerability using McArthur’s forest and grass fire danger indices
    Anirban Khastagir
    Niranjali Jayasuriya
    Muhammed A. Bhuyian
    Natural Hazards, 2018, 94 : 1277 - 1291