Hida duality and the Iwasawa main conjecture

被引:0
|
作者
Matthew J. Lafferty
机构
来源
Mathematische Annalen | 2019年 / 375卷
关键词
11F33; 11F67; 11R23;
D O I
暂无
中图分类号
学科分类号
摘要
The central result of this paper is a refinement of Hida’s duality theorem between ordinary Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varLambda }$$\end{document}-adic modular forms and the universal ordinary Hecke algebra. In particular, we give a sufficient condition for this duality to be integral with respect to particular submodules of the space of ordinary Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varLambda }$$\end{document}-adic modular forms. This refinement allows us to give a simple proof that the universal ordinary cuspidal Hecke algebra modulo Eisenstein ideal is isomorphic to the Iwasawa algebra modulo an ideal related to the Kubota-Leopoldt p-adic L-function. The motivation behind these results stems from a proof of the Iwasawa main conjecture over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document} by Ohta. While simple and elegant, Ohta’s proof requires some restrictive hypotheses which we are able to remove using our results.
引用
收藏
页码:737 / 776
页数:39
相关论文
共 50 条