Numerical simulations of emulsions in shear flows

被引:0
|
作者
Marco E. Rosti
Francesco De Vita
Luca Brandt
机构
[1] KTH Mechanics,Linné Flow Centre and SeRC
来源
Acta Mechanica | 2019年 / 230卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a modification of a recently developed volume of fluid method for multiphase problems (Ii et al. in J Comput Phys 231(5):2328–2358, 2012), so that it can be used in conjunction with a fractional-step method and fast Poisson solver, and validate it with standard benchmark problems. We then consider emulsions of two-fluid systems and study their rheology in a plane Couette flow in the limit of vanishing inertia. We examine the dependency of the effective viscosity μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on the volume fraction Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} (from 10 to 30%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30\%$$\end{document}) and the Capillary number Ca (from 0.1 to 0.4) for the case of density and viscosity ratio 1. We show that the effective viscosity decreases with the deformation and the applied shear (shear-thinning) while exhibiting a non-monotonic behavior with respect to the volume fraction. We report the appearance of a maximum in the effective viscosity curve and compare the results with those of suspensions of rigid and deformable particles and capsules. We show that the flow in the solvent is mostly a shear flow, while it is mostly rotational in the suspended phase; moreover, this behavior tends to reverse as the volume fraction increases. Finally, we evaluate the contributions to the total shear stress of the viscous stresses in the two fluids and of the interfacial force between them.
引用
收藏
页码:667 / 682
页数:15
相关论文
共 50 条
  • [1] Numerical simulations of emulsions in shear flows
    Rosti, Marco E.
    De Vita, Francesco
    Brandt, Luca
    ACTA MECHANICA, 2019, 230 (02) : 667 - 682
  • [2] Numerical simulations of vorticity banding of emulsions in shear flows
    De Vita, Francesco
    Rosti, Marco Edoardo
    Caserta, Sergio
    Brandt, Luca
    SOFT MATTER, 2020, 16 (11) : 2854 - 2863
  • [3] NUMERICAL SIMULATIONS OF TURBULENT SHEAR FLOWS
    LESIEUR, M
    APPLIED SCIENTIFIC RESEARCH, 1993, 51 (1-2): : 345 - 351
  • [4] Direct Numerical Simulations of Turbulent Shear Flows
    Sandberg, Richard D.
    HIGH PERFORMANCE COMPUTING ON VECTOR SYSTEMS 2009, 2010, : 151 - 165
  • [5] NUMERICAL SIMULATIONS OF GRAVITY CURRENTS IN UNIFORM SHEAR FLOWS
    CHEN, CI
    MONTHLY WEATHER REVIEW, 1995, 123 (11) : 3240 - 3253
  • [6] NUMERICAL SIMULATIONS OF ASYMMETRIC MIXING IN PLANAR SHEAR FLOWS
    GRINSTEIN, FF
    ORAN, ES
    BORIS, JP
    JOURNAL OF FLUID MECHANICS, 1986, 165 : 201 - &
  • [7] Shear flow of highly concentrated emulsions of deformable drops by numerical simulations
    Zinchenko, AZ
    Davis, RH
    JOURNAL OF FLUID MECHANICS, 2002, 455 : 21 - 62
  • [8] Numerical simulations of an inverted flexible plate in linear shear flows
    Wang, Lei
    Fang, Zhen
    Hua, Ru-Nan
    Peng, Ze-Rui
    PHYSICS OF FLUIDS, 2020, 32 (04)
  • [9] NUMERICAL SIMULATIONS OF ASYMMETRIC MIXING IN PLANAR SHEAR FLOWS.
    Grinstein, F.F.
    Oran, E.S.
    Boris, J.P.
    Journal of Fluid Mechanics, 1986, 165 : 201 - 220
  • [10] Effective forcing for direct numerical simulations of the shear layer of turbulent free shear flows
    Dhandapani, Chandru
    Rah, Kyupaeck Jeff
    Blanquart, Guillaume
    PHYSICAL REVIEW FLUIDS, 2019, 4 (08)