Onset of chaotic motion in a gyroscopic system

被引:0
|
作者
S. A. Agafonov
T. V. Muratova
机构
[1] Bauman Moscow State Technical University,
来源
Mechanics of Solids | 2013年 / 48卷
关键词
gimbal gyro; perturbing torque; Routh function; hyperbolic and elliptic points; homoclinic solution; conditions for the intersection of separatrices in the perturbed system; local criterion for the onset of chaotic motion;
D O I
暂无
中图分类号
学科分类号
摘要
We study forced vibrations of a gimbal gyro occurring if the inner ring is subjected to a perturbing torque that is the sum of the viscous friction torque and a periodic small-amplitude torque. In the absence of the perturbing torque, there exist two steady-state motions of the gimbal gyro, in which the gimbal rings are either orthogonal or coincide. These motions are respectively stable and unstable. We obtain an equation for the unperturbed system, whose separatrix passes through hyperbolic points. The distance between these points (the Melnikov distance) is calculated to find a condition for the intersection of the separatrices of the perturbed system.
引用
收藏
页码:620 / 622
页数:2
相关论文
共 50 条
  • [1] Onset of chaotic motion in a gyroscopic system
    Agafonov, S. A.
    Muratova, T. V.
    MECHANICS OF SOLIDS, 2013, 48 (06) : 620 - 622
  • [2] ON THE ONSET OF CHAOTIC MOTION IN DETERMINISTIC SYSTEMS
    RAMASWAMY, R
    MARCUS, RA
    JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (02): : 1385 - 1393
  • [3] Synchronization of a chaotic gyroscopic system under settling time constraints
    Bousson, K. (k1bousson@yahoo.com), 1600, Vibromechanika (14):
  • [5] ON CORRELATION-FUNCTIONS AND THE ONSET OF CHAOTIC MOTION
    KOSZYKOWSKI, ML
    NOID, DW
    TABOR, M
    MARCUS, RA
    JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (04): : 2530 - 2535
  • [6] TOPICS IN GYROSCOPIC MOTION
    JENNINGS, FB
    PORITSKY, H
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1953, 20 (04): : 589 - 590
  • [7] Chaotic motion in the Solar System
    Lissauer, JJ
    REVIEWS OF MODERN PHYSICS, 1999, 71 (03) : 835 - 845
  • [8] Chaotic Motion of Nonlinear System
    Aslanov, V. S.
    Ivanov, B. V.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2008, 8 (04): : 38 - 43
  • [9] TOPICS IN GYROSCOPIC MOTION
    PORITSKY, H
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1953, 20 (01): : 1 - 8
  • [10] Electromagnetic Gyroscopic Motion
    Ismail, A. I.
    Amer, T. S.
    El Banna, S. A.
    El-Ameen, M. A.
    JOURNAL OF APPLIED MATHEMATICS, 2012,