Numerical study of natural-convection from horizontal cylinder at eccentric positions with change in aspect ratio of a cooled square enclosure

被引:0
|
作者
D. Talukdar
M. Tsubokura
机构
[1] Kobe University,Graduate School of System Informatics
来源
Heat and Mass Transfer | 2022年 / 58卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This numerical study reports the change in natural-convection heat transfer characteristics from a stationary 2D horizontal cylinder with the change in the aspect ratio (ratio of cylinder radius to enclosure length, R/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/L$$\end{document}) of a cooled square outer enclosure and position of the cylinder for Rayleigh number (RaD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(Ra}_{D})$$\end{document} of 1.114×104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1.114\times 10}^{4}$$\end{document} and 1.114×105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1.114\times 10}^{5}$$\end{document}. The cylinder position is varied between concentric to eccentric positions along the horizontal and vertical median and diagonal of the enclosure for R/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/L$$\end{document} in the range from 0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1$$\end{document} to 0.225\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.225$$\end{document}. The simulations are performed under non-Boussinesq conditions and Immersed Boundary Method to model the cylinder surface. The combination of thermal stratification effects, optimized convection flow and the effect of heat conduction between cylinder periphery and the enclosure wall is found to determine the net heat transfer behavior. For eccentricity along the vertical median of the enclosure, the position near the bottom wall and the position near the top wall results in heat transfer enhancement at the lower R/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/L$$\end{document} values and higher R/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/L$$\end{document} values respectively. The concentric position of the cylinder results in maximum heat transfer at R/L=0.15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/L=0.15$$\end{document} for RaD=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Ra}_{D}=$$\end{document}1.114×104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.114\times {10}^{4}$$\end{document} and at R/L=0.175\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/L=0.175$$\end{document} for RaD=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Ra}_{D}=$$\end{document}1.114×105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.114\times {10}^{5}$$\end{document}. For eccentricity along the diagonal, the position near the top wall results in maximum heat transfer enhancement at R/L=0.175\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/L=0.175$$\end{document} and higher for RaD=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Ra}_{D}=$$\end{document}1.114×104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.114\times {10}^{4}$$\end{document} and at R/L=0.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/L=0.2$$\end{document} and higher for RaD=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Ra}_{D}=$$\end{document}1.114×105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.114\times {10}^{5}$$\end{document}. The intensity of the chimney effect depending on the Rayleigh number is found to be the driving parameter at lower R/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/L$$\end{document} values which determines the optimum cylinder position along the horizontal median. The effect of heat conduction with the vertical wall results in heat transfer enhancement for the position nearest to the vertical wall at R/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/L$$\end{document} values higher than 0.175\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.175$$\end{document}.
引用
收藏
页码:849 / 871
页数:22
相关论文
共 50 条
  • [1] Numerical study of natural-convection from horizontal cylinder at eccentric positions with change in aspect ratio of a cooled square enclosure
    Talukdar, D.
    Tsubokura, M.
    [J]. HEAT AND MASS TRANSFER, 2022, 58 (05) : 849 - 871
  • [2] NATURAL-CONVECTION IN HORIZONTAL ECCENTRIC ANNULI - NUMERICAL STUDY
    GUJ, G
    STELLA, F
    [J]. NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1995, 27 (01) : 89 - 105
  • [3] A numerical study of natural convection around a square, horizontal, heated cylinder placed in an enclosure
    De, Arnab Kumar
    Dalal, Amaresh
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (23-24) : 4608 - 4623
  • [4] NATURAL-CONVECTION IN A SQUARE ENCLOSURE PERIODICALLY HEATED FROM BELOW - NUMERICAL STUDY
    LAKHAL, EK
    HASNAOUI, M
    VASSEUR, P
    BILGEN, E
    [J]. REVUE GENERALE DE THERMIQUE, 1994, 33 (392-93): : 480 - 485
  • [5] A numerical study on natural convection in an inclined square enclosure with a circular cylinder
    Park, Hyung Kwon
    Ha, Man Yeong
    Yoon, Hyun Sik
    Park, Yong Gap
    Son, Changmin
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 66 : 295 - 314
  • [6] Experimental study of natural-convection plumes from a heated horizontal square plate and a vertical cylinder
    Welling, I
    [J]. EXPERIMENTAL HEAT TRANSFER, 2000, 13 (01) : 7 - 19
  • [7] NUMERICAL STUDY OF NATURAL-CONVECTION FROM DISCRETE HEAT-SOURCES IN A VERTICAL SQUARE ENCLOSURE
    AHMED, GR
    YOVANOVICH, MM
    [J]. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1992, 6 (01) : 121 - 127
  • [8] Numerical study on natural convection in a square enclosure containing a rectangular heated cylinder
    Lu J.
    Shi B.
    Guo Z.
    Chai Z.
    [J]. Frontiers of Energy and Power Engineering in China, 2009, 3 (4): : 373 - 380
  • [9] Classification of Flow Modes for Natural Convection in a Square Enclosure with an Eccentric Circular Cylinder
    Yoon, Hyun-Sik
    Shim, Yoo-Jeong
    [J]. ENERGIES, 2021, 14 (10)
  • [10] SEPARATED LAMINAR NATURAL-CONVECTION ABOVE A HORIZONTAL ISOTHERMAL SQUARE CYLINDER
    CHANG, KS
    CHOI, CJ
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1986, 13 (02) : 201 - 208