Lower Bounds in Real Algebraic Geometry and Orientability of Real Toric Varieties

被引:0
|
作者
Evgenia Soprunova
Frank Sottile
机构
[1] Kent State University,Department of Mathematics
[2] Texas A&M University,Department of Mathematics
来源
关键词
Real toric variety; Polynomial system; Order polytope; 14M25; 57B20; 57S10; 14P99;
D O I
暂无
中图分类号
学科分类号
摘要
The real solutions to a system of sparse polynomial equations may be realized as a fiber of a projection map from a toric variety. When the toric variety is orientable, the degree of this map is a lower bound for the number of real solutions to the system of equations. We strengthen previous work by characterizing when the toric variety is orientable. This is based on work of Nakayama and Nishimura, who characterized the orientability of smooth real toric varieties.
引用
收藏
页码:509 / 519
页数:10
相关论文
共 50 条
  • [1] Lower Bounds in Real Algebraic Geometry and Orientability of Real Toric Varieties
    Soprunova, Evgenia
    Sottile, Frank
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (02) : 509 - 519
  • [2] Intrinsic signs and lower bounds in real algebraic geometry
    Okonek, Christian
    Teleman, Andrei
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 688 : 219 - 241
  • [3] Toric completions and bounded functions on real algebraic varieties
    Plaumann, Daniel
    Scheiderer, Claus
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 598 - 616
  • [4] Spaces of algebraic maps from real projective spaces to toric varieties
    KonowsKi, Andrzej
    Ohno, Masahiro
    Yamaguchi, Kohhei
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (02) : 745 - 771
  • [5] The cohomology rings of real toric spaces an smooth real toric varieties
    Franz, Matthias
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (03) : 720 - 737
  • [6] Halving spaces and lower bounds in real enumerative geometry
    Feher, Laszlo M.
    Matszangosz, Akos K.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (01): : 433 - 472
  • [7] ON THE LOWER BOUNDS OF THE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION
    RENGANATHAN, N
    SAMBANDHAM, M
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1982, 13 (02): : 148 - 157
  • [8] REAL ALGEBRAIC GEOMETRY
    WALLACE, AH
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (07): : 828 - &
  • [9] On Real Toric Varieties of Dimension Two
    Znamenskaya, Oksana V.
    Schuplev, Alexey V.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2009, 2 (04): : 401 - 409
  • [10] Hodge spaces of real toric varieties
    Hower, Valerie
    COLLECTANEA MATHEMATICA, 2008, 59 (02) : 215 - 237