Application of a Quasi-Acoustic Scheme to Solve Shallow-Water Equations with an Uneven Bottom

被引:0
|
作者
Isakov V.A. [1 ]
机构
[1] Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow
关键词
equations of shallow water over an uneven bottom; numerical methods; quasi-acoustic scheme; system of equations of hyperbolic type;
D O I
10.1007/s10598-018-9412-7
中图分类号
学科分类号
摘要
We describe the application of an explicit homogeneous conservative quasi-acoustic scheme to numerical solution of one-dimensional shallow-water equations with an uneven bottom. The scheme performs linear reconstruction of the numerical solution within a single numerical cell and partitions the linear reconstruction into small-perturbation horizontal layers. The quasi-acoustic scheme correctly reproduces the physical solution in the neighborhood of the sonic point without invoking artificial regularizers or tuning parameters. The scheme is verified on a number of test and prototype problems. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:319 / 333
页数:14
相关论文
共 50 条
  • [1] Application of a Limiterless Quasi Acoustic Scheme to Solve Two-Dimensional Shallow Water Equations with an Uneven Bottom
    Isakov V.A.
    Computational Mathematics and Modeling, 2020, 31 (1) : 25 - 42
  • [2] A naive scheme to solve shallow-water equations
    Buffard, T
    Gallouet, T
    Herard, JM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (03): : 385 - 390
  • [3] Quasi-Acoustic Scheme for the Euler Equations of Gas Dynamics
    Abakumov, M. V.
    Galanina, A. M.
    Isakov, V. A.
    Tyurina, N. N.
    Favorskii, A. P.
    Khrulenko, A. B.
    DIFFERENTIAL EQUATIONS, 2011, 47 (08) : 1103 - 1109
  • [4] Quasi-acoustic scheme for the Euler equations of gas dynamics
    M. V. Abakumov
    A. M. Galanina
    V. A. Isakov
    N. N. Tyurina
    A. P. Favorskii
    A. B. Khrulenko
    Differential Equations, 2011, 47 : 1103 - 1109
  • [5] Godunov-type scheme for 1-D shallow-water flow with uneven bottom
    Pan, Cun-Hong
    Lin, Bing-Yao
    Mao, Xian-Zhong
    Shuikexue Jinzhan/Advances in Water Science, 2003, 14 (04): : 430 - 436
  • [6] Hamiltonian regularisation of shallow water equations with uneven bottom
    Clamond, Didier
    Dutykh, Denys
    Mitsotakis, Dimitrios
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (42)
  • [7] ACOUSTIC PROPAGATION IN SHALLOW-WATER OVERLYING A CONSOLIDATED BOTTOM
    INGENITO, F
    WOLF, SN
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1976, 60 (03): : 611 - 617
  • [8] AN EFFICIENT NUMERICAL SCHEME FOR THE SHALLOW-WATER EQUATIONS
    GLAISTER, P
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 48 (3-4) : 239 - 250
  • [10] Acoustic Transmission Loss in Shallow-Water Waveguides with an Sloping Bottom
    A. A. Lunkov
    M. A. Shermeneva
    Acoustical Physics, 2019, 65 : 527 - 536