Generation of networks with prescribed degree-dependent clustering

被引:0
|
作者
Chrysanthos E. Gounaris
Karthikeyan Rajendran
Ioannis G. Kevrekidis
Christodoulos A. Floudas
机构
[1] Princeton University,Department of Chemical and Biological Engineering
[2] Princeton University,Program in Applied and Computational Mathematics
来源
Optimization Letters | 2011年 / 5卷
关键词
Networks; Graph theory; Mathematical optimization; Clustering;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a systematic, rigorous mathematical optimization methodology for the construction, “on demand,” of network structures that are guaranteed to possess a prescribed collective property: the degree-dependent clustering. The ability to generate such realizations of networks is important not only for creating artificial networks that can perform desired functions, but also to facilitate the study of networks as part of other algorithms. This problem exhibits large combinatorial complexity and is difficult to solve with off-the-shelf commercial optimization software. To that end, we also present a customized preprocessing algorithm that allows us to judiciously fix certain problem variables and, thus, significantly reduce computational times. Results from the application of the framework to data sets resulting from simulations of an acquaintance network formation model are presented.
引用
收藏
页码:435 / 451
页数:16
相关论文
共 50 条
  • [1] Generation of networks with prescribed degree-dependent clustering
    Gounaris, Chrysanthos E.
    Rajendran, Karthikeyan
    Kevrekidis, Ioannis G.
    Floudas, Christodoulos A.
    OPTIMIZATION LETTERS, 2011, 5 (03) : 435 - 451
  • [2] Generating random networks with given degree-degree correlations and degree-dependent clustering
    Pusch, Andreas
    Weber, Sebastian
    Porto, Markus
    PHYSICAL REVIEW E, 2008, 77 (01)
  • [3] Degree-dependent intervertex separation in complex networks
    Dorogovtsev, S. N.
    Mendes, J. F. F.
    Oliveira, J. G.
    PHYSICAL REVIEW E, 2006, 73 (05)
  • [4] Degree-Dependent and Cascading Node Failures in Random Geometric Networks
    Kong, Zhenning
    Yeh, Edmund M.
    2011 - MILCOM 2011 MILITARY COMMUNICATIONS CONFERENCE, 2011, : 1727 - 1732
  • [5] Social contagion with degree-dependent thresholds
    Lee, Eun
    Holme, Petter
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [6] Resilience to Degree-Dependent and Cascading Node Failures in Random Geometric Networks
    Kong, Zhenning
    Yeh, Edmund M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (11) : 5533 - 5546
  • [7] Degree-Dependent Decoding of LDPC Codes
    Lechner, Gottfried
    Land, Ingmar
    2010 AUSTRALIAN COMMUNICATIONS THEORY WORKSHOP, 2010, : 107 - 110
  • [8] Measuring degree-dependent failure in scale-free networks of bipartite structure
    Shang, Y. (shylmath@hotmail.com), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (08):
  • [9] The virus variation model by considering the degree-dependent spreading rate
    Han, Dun
    Sun, Mei
    Li, Dandan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 433 : 42 - 50
  • [10] Wireless Network Resilience to Degree-Dependent and Cascading Node Failures
    Kong, Zhenning
    Yeh, Edmund M.
    2009 7TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS, 2009, : 540 - 545