Approximation algorithms for coupled task scheduling minimizing the sum of completion times

被引:0
|
作者
David Fischer
Péter Györgyi
机构
[1] Institute for Algorithms and Complexity,Hamburg University of Technology
[2] Eötvös Loránd Research Network,Institute for Computer Science and Control
来源
关键词
Single machine scheduling; Coupled task problem; Approximation algorithms; Total completion times;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the coupled task scheduling problem with exact delay times on a single machine with the objective of minimizing the total completion time of the jobs. We provide constant-factor approximation algorithms for several variants of this problem that are known to be NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{N}\mathcal{P}$$\end{document}-hard, while also proving NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{N}\mathcal{P}$$\end{document}-hardness for two variants whose complexity was unknown before. Using these results, together with constant-factor approximations for the makespan objective from the literature, we also introduce the first results on bi-objective approximation in the coupled task setting.
引用
收藏
页码:1387 / 1408
页数:21
相关论文
共 50 条
  • [1] Approximation algorithms for coupled task scheduling minimizing the sum of completion times
    Fischer, David
    Gyorgyi, Peter
    [J]. ANNALS OF OPERATIONS RESEARCH, 2023, 328 (02) : 1387 - 1408
  • [2] Minimizing sum of completion times for batch scheduling of jobs with deteriorating processing times
    Leung, Joseph Y. -T.
    Ng, C. T.
    Cheng, T. C. Edwin
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 187 (03) : 1090 - 1099
  • [3] Scheduling with non-renewable resources: minimizing the sum of completion times
    Kristóf Bérczi
    Tamás Király
    Simon Omlor
    [J]. Journal of Scheduling, 2024, 27 : 151 - 164
  • [4] Scheduling with non-renewable resources: minimizing the sum of completion times
    Berczi, Kristof
    Kiraly, Tamas
    Omlor, Simon
    [J]. JOURNAL OF SCHEDULING, 2024, 27 (02) : 151 - 164
  • [5] Combinatorial algorithms for minimizing the weighted sum of completion times on a single machine
    Davis, James M.
    Gandhi, Rajiv
    Kothari, Vijay H.
    [J]. OPERATIONS RESEARCH LETTERS, 2013, 41 (02) : 121 - 125
  • [6] MINIMIZING THE SUM OF COMPLETION TIMES WITH RESOURCE DEPENDANT TIMES
    Yedidsion, Liron
    Shabtay, Dvir
    Kaspi, Moshe
    [J]. INTERNATIONAL CONFERENCE ON POWER CONTROL AND OPTIMIZATION, 2008, 1052 : 292 - 297
  • [7] MINIMIZING THE SUM OF WEIGHTED COMPLETION TIMES WITH UNRESTRICTED WEIGHTS
    DELLAMICO, M
    MARTELLO, S
    VIGO, D
    [J]. DISCRETE APPLIED MATHEMATICS, 1995, 63 (01) : 25 - 41
  • [8] Preemptive scheduling on uniformly related machines: minimizing the sum of the largest pair of job completion times
    Epstein, Leah
    Yatsiv, Ido
    [J]. JOURNAL OF SCHEDULING, 2017, 20 (02) : 115 - 127
  • [9] Preemptive scheduling on uniformly related machines: minimizing the sum of the largest pair of job completion times
    Leah Epstein
    Ido Yatsiv
    [J]. Journal of Scheduling, 2017, 20 : 115 - 127
  • [10] Scheduling to minimize the weighted sum of completion times
    Zhao, Chuan-Li
    Zhang, Qing-Ling
    Tang, Heng-Yong
    [J]. Dongbei Daxue Xuebao/Journal of Northeastern University, 2003, 24 (06): : 515 - 518