Quantified constraint satisfaction and the polynomially generated powers property

被引:0
|
作者
Hubie Chen
机构
[1] Universitat Pompeu Fabra,Departament de Tecnologies de la Informació i les Comunicacions
来源
Algebra universalis | 2011年 / 65卷
关键词
Primary: 03B70; Secondary: 03B10; 08A70; 68Q17; 68T27; quantified constraint satisfaction; computational complexity; dichotomy theorem;
D O I
暂无
中图分类号
学科分类号
摘要
The quantified constraint satisfaction probem (QCSP) is the problem of deciding, given a relational structure and a sentence consisting of a quantifier prefix followed by a conjunction of atomic formulas, whether or not the sentence is true in the structure. The general computational intractability of the QCSP has led to the study of restricted versions of this problem. In this article, we study restricted versions of the QCSP that arise from prespecifying the relations that may occur via a set of relations called a constraint language. A basic tool used is a correspondence that associates an algebra to each constraint language; this algebra can be used to derive information on the behavior of the constraint language.
引用
收藏
相关论文
共 50 条
  • [1] Quantified constraint satisfaction and the polynomially generated powers property
    Chen, Hubie
    [J]. ALGEBRA UNIVERSALIS, 2011, 65 (03) : 213 - 241
  • [2] Quantified constraint satisfaction and the polynomially generated powers property (extended abstract)
    Chen, Hubie
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT 2, PROCEEDINGS, 2008, 5126 : 197 - 208
  • [3] Relatively quantified constraint satisfaction
    Manuel Bodirsky
    Hubie Chen
    [J]. Constraints, 2009, 14 : 3 - 15
  • [4] Relatively quantified constraint satisfaction
    Bodirsky, Manuel
    Chen, Hubie
    [J]. CONSTRAINTS, 2009, 14 (01) : 3 - 15
  • [5] The Dichotomy for Conservative Constraint Satisfaction is Polynomially Decidable
    Carbonnel, Clement
    [J]. PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2016, 2016, 9892 : 130 - 146
  • [6] Quantified constraint satisfaction and bounded treewidth
    Chen, H
    [J]. ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 161 - 165
  • [7] Existentially restricted quantified constraint satisfaction
    Chen, Hubie
    [J]. INFORMATION AND COMPUTATION, 2009, 207 (03) : 369 - 388
  • [8] Quantified Valued Constraint Satisfaction Problem
    Madelaine, Florent
    Secouard, Stephane
    [J]. PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, 2018, 11008 : 295 - 311
  • [9] Optimization, games, and quantified constraint satisfaction
    Chen, HB
    Pál, M
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS, 2004, 3153 : 239 - 250
  • [10] Solving quantified constraint satisfaction problems
    Gent, Ian P.
    Nightingale, Peter
    Rowley, Andrew
    Stergiou, Kostas
    [J]. ARTIFICIAL INTELLIGENCE, 2008, 172 (6-7) : 738 - 771