Non-perturbative wavefunction of the universe in inflation with (resonant) features

被引:2
|
作者
Creminelli, Paolo [1 ,2 ]
Renaux-Petel, Sebastien [3 ,4 ]
Tambalo, Giovanni [5 ,6 ]
Yingcharoenrat, Vicharit [7 ]
机构
[1] ICTP Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] IFPU Inst Fundamental Phys Universe, Via Beirut 2, I-34014 Trieste, Italy
[3] CNRS, Inst Astrophys Paris, UMR 7095, 98 bis bd Arago, F-75014 Paris, France
[4] Sorbonne Univ, 98 bis bd Arago, F-75014 Paris, France
[5] Albert Einstein Inst, Max Planck Inst Grav Phys, Muhlenberg 1, D-14476 Potsdam, Germany
[6] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[7] Univ Tokyo, Inst Adv Study UTIAS, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
基金
欧洲研究理事会;
关键词
Cosmological models; Effective Field Theories; Nonperturbative Effects;
D O I
10.1007/JHEP03(2024)010
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the statistics of scalar perturbations in models of inflation with small and rapid oscillations in the inflaton potential (resonant non-Gaussianity). We do so by deriving the wavefunction Psi[zeta(x)] non-perturbatively in zeta, but at first order in the amplitude of the oscillations. The expression of the wavefunction of the universe (WFU) is explicit and does not require solving partial differential equations. One finds qualitative deviations from perturbation theory for |zeta| greater than or similar to alpha(-2), where alpha >> 1 is the number of oscillations per Hubble time. Notably, the WFU exhibits distinct behaviours for negative and positive values of zeta (troughs and peaks respectively). While corrections for zeta < 0 remain relatively small, of the order of the oscillation amplitude, positive zeta yields substantial effects, growing exponentially as e(pi alpha/2) in the limit of large zeta. This indicates that even minute oscillations give large effects on the tail of the distribution.
引用
收藏
页数:54
相关论文
共 50 条
  • [1] Perturbative unitarity and the wavefunction of the Universe
    Albayrak, Soner
    Benincasa, Paolo
    Pueyo, Carlos Duaso
    [J]. SCIPOST PHYSICS, 2024, 16 (06):
  • [2] Patient observers and non-perturbative infrared dynamics in inflation
    Ferreira, Ricardo Z.
    Sandora, McCullen
    Sloth, Martin S.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (02):
  • [3] Quasi-single field inflation in the non-perturbative regime
    Haipeng An
    Michael McAneny
    Alexander K. Ridgway
    Mark B. Wise
    [J]. Journal of High Energy Physics, 2018
  • [4] Quasi-single field inflation in the non-perturbative regime
    An, Haipeng
    McAneny, Michael
    Ridgway, Alexander K.
    Wise, Mark B.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [5] Non-perturbative Quantum Mechanics from Non-perturbative Strings
    Codesido, Santiago
    Marino, Marcos
    Schiappa, Ricardo
    [J]. ANNALES HENRI POINCARE, 2019, 20 (02): : 543 - 603
  • [6] Non-perturbative Quantum Mechanics from Non-perturbative Strings
    Santiago Codesido
    Marcos Mariño
    Ricardo Schiappa
    [J]. Annales Henri Poincaré, 2019, 20 : 543 - 603
  • [7] R2 inflation to probe non-perturbative quantum gravity
    Koshelev, Alexey S.
    Kumar, K. Sravan
    Starobinsky, Alexei A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [8] R2 inflation to probe non-perturbative quantum gravity
    Alexey S. Koshelev
    K. Sravan Kumar
    Alexei A. Starobinsky
    [J]. Journal of High Energy Physics, 2018
  • [9] Perturbative tests of non-perturbative counting
    Dabholkar, Atish
    Gomes, Joao
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (03):
  • [10] Perturbative and non-perturbative structure of hadrons
    Hatsuda, T
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1996, 29 : S291 - S297