Extremum Problem for Periodic Functions Supported in a Ball

被引:0
|
作者
D. V. Gorbachev
机构
[1] Tula State University,
来源
Mathematical Notes | 2001年 / 69卷
关键词
extremum problem; periodic function; Fourier coefficient; asymptotic expansion; entire function of exponential type;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Turan n-dimensional extremum problem of finding the value of An(hBn) which is equal to the maximum zero Fourier coefficient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\widehat f_0$$ \end{document} of periodic functions f supported in the Euclidean ball hBn of radius h, having nonnegative Fourier coefficients, and satisfying the condition f(0)= 1. This problem originates from applications to number theory. The case of A1([−h,h]) was studied by S. B. Stechkin. For An(hBn we obtain an asymptotic series as h → 0 whose leading term is found by solving an n-dimensional extremum problem for entire functions of exponential type.
引用
收藏
页码:313 / 319
页数:6
相关论文
共 50 条