A New Stochastic Process with Long-Range Dependence

被引:0
|
作者
Sung Ik Kim
Young Shin Kim
机构
[1] Louisiana State University Shreveport,College of Business
[2] Stony Brook University,College of Business
关键词
Generalized hyperbolic process; Lévy process; Time-changed Brownian motion; Long-range dependence; Fractional Brownian motion;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a fractional Generalized Hyperbolic process, a new stochastic process with long-range dependence obtained by subordinating fractional Brownian motion to a fractional Generalized Inverse Gaussian process. The basic properties and covariance structure between the elements of the processes are discussed, and we present numerical methods to generate the sample paths for the processes.
引用
收藏
页码:432 / 438
页数:6
相关论文
共 50 条
  • [1] A New Stochastic Process with Long-Range Dependence
    Kim, Sung Ik
    Kim, Young Shin
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2020, 19 (03): : 432 - 438
  • [2] Stochastic Volatility with Long-Range Dependence
    Casas, I
    Gao, J.
    MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 802 - 806
  • [3] Long-range dependence
    Beran, Jan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (01) : 26 - 35
  • [4] Parameter estimation of stochastic processes with long-range dependence and intermittency
    Gao, JT
    Anh, V
    Heyde, C
    Tieng, Q
    JOURNAL OF TIME SERIES ANALYSIS, 2001, 22 (05) : 517 - 535
  • [5] On the Long-Range Dependence of Mixed Fractional Poisson Process
    Kataria, K. K.
    Khandakar, M.
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (03) : 1607 - 1622
  • [6] On the Long-Range Dependence of Mixed Fractional Poisson Process
    K. K. Kataria
    M. Khandakar
    Journal of Theoretical Probability, 2021, 34 : 1607 - 1622
  • [7] Stochastic process of equilibrium fluctuations of a system with long-range interactions
    Bouchet, F
    PHYSICAL REVIEW E, 2004, 70 (03):
  • [8] Continuous-time stochastic processes with cyclical long-range dependence
    Anh, VV
    Knopova, VP
    Leonenko, NN
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2004, 46 (02) : 275 - 296
  • [9] Option Pricing Under Multifractional Process and Long-Range Dependence
    Mattera, Raffaele
    Di Sciorio, Fabrizio
    FLUCTUATION AND NOISE LETTERS, 2021, 20 (01):
  • [10] On defining long-range dependence
    Heyde, CC
    Yang, Y
    JOURNAL OF APPLIED PROBABILITY, 1997, 34 (04) : 939 - 944