Equivariant Euler–Poincaré characteristic in sheaf cohomology

被引:0
|
作者
Steffen Kionke
Jürgen Rohlfs
机构
[1] Heinrich-Heine-Universität Düsseldorf,Lehrstuhl für Algebra und Zahlentheorie, Mathematisches Institut
[2] Katholische Universität Eichstätt-Ingolstadt,undefined
来源
Manuscripta Mathematica | 2016年 / 149卷
关键词
Primary 55N30; Secondary 54H15;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Hausdorff space equipped with a continuous action of a finite group G and a G-stable family of supports Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi}$$\end{document}. Fix a number field F with ring of integers R. We study the class χ=∑j(-1)j[HΦj(X,E)⊗RF]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi = \sum_j (-1)^j [H^j_\Phi (X, \mathcal{E}) \otimes_R F]}$$\end{document} in the character group of G over F for any flat G-sheaf E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{E}}$$\end{document} of R-modules over X. Under natural cohomological finiteness conditions we give a formula for χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi}$$\end{document} with respect to the basis given by the irreducible characters of G. We discuss applications of our result concerning the cohomology of arithmetic groups.
引用
收藏
页码:283 / 295
页数:12
相关论文
共 50 条
  • [1] Equivariant Euler-Poincare characteristic in sheaf cohomology
    Kionke, Steffen
    Rohlfs, Juergen
    MANUSCRIPTA MATHEMATICA, 2016, 149 (3-4) : 283 - 295
  • [2] EQUIVARIANT EULER CHARACTERISTICS AND SHEAF RESOLVENTS
    Cassou-Nogues, Ph.
    Taylor, M. J.
    ANNALES DE L INSTITUT FOURIER, 2012, 62 (06) : 2315 - 2345
  • [3] THE EQUIVARIANT EULER CHARACTERISTIC
    COSTENOBLE, SR
    WANER, S
    WU, YH
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 70 (03) : 227 - 249
  • [4] On Euler characteristic of equivariant sheaves
    Braverman, A
    ADVANCES IN MATHEMATICS, 2003, 179 (01) : 1 - 6
  • [5] ON EQUIVARIANT SHEAF COHOMOLOGY AND ELEMENTARY C-STAR-BUNDLES
    KUMJIAN, A
    JOURNAL OF OPERATOR THEORY, 1988, 20 (02) : 207 - 240
  • [6] A note on equivariant Euler characteristic
    Mukherjee, A
    Naolekar, AC
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (02): : 163 - 167
  • [7] A note on equivariant Euler characteristic
    Amiya Mukherjee
    Aniruddha C. Naolekar
    Proceedings - Mathematical Sciences, 1997, 107 : 163 - 167
  • [8] On the coefficient sheaf of equivariant elliptic cohomology for finite groups II
    Tanabe, M
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 42 (04): : 739 - 749
  • [9] Syzygies in equivariant cohomology in positive characteristic
    Allday, Christopher
    Franz, Matthias
    Puppe, Volker
    FORUM MATHEMATICUM, 2021, 33 (02) : 547 - 567
  • [10] Equivariant higher analytic torsion and equivariant Euler characteristic
    Bunke, U
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (02) : 377 - 401