Primary carbonatite melt from deeply subducted oceanic crust

被引:0
|
作者
M. J. Walter
G. P. Bulanova
L. S. Armstrong
S. Keshav
J. D. Blundy
G. Gudfinnsson
O. T. Lord
A. R. Lennie
S. M. Clark
C. B. Smith
L. Gobbo
机构
[1] University of Bristol,Department of Earth Sciences
[2] Queen’s Road,undefined
[3] Bristol BS8 1RJ,undefined
[4] UK,undefined
[5] Bayerisches Geoinstitut,undefined
[6] Universität Bayreuth,undefined
[7] Daresbury Laboratory,undefined
[8] Keckwick Lane,undefined
[9] Warrington WA4 4AD,undefined
[10] UK ,undefined
[11] Advanced Light Source,undefined
[12] Lawrence Berkeley National Laboratory,undefined
[13] 1 Cyclotron Road,undefined
[14] Berkeley,undefined
[15] California 94720,undefined
[16] USA ,undefined
[17] Rio Tinto Mining and Exploration Ltd.,undefined
[18] Paddington,undefined
[19] London W2 6LG,undefined
[20] UK ,undefined
[21] Rio Tinto Desinvolvimentos Minerais Ltda,undefined
[22] SIA Trecho 2,undefined
[23] Lote 720,undefined
[24] Brasilia,undefined
[25] DF 71.200-020,undefined
[26] Brazil ,undefined
来源
Nature | 2008年 / 454卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The geochemical and isotopic diversity observed in volcanic rocks at the Earth's surface is due in large part to partial melting in the Earth's mantle. Mineral inclusions in natural diamonds can provide a window into such deep mantle processes. Walter et al. provide experimental and geochemical observations showing that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. Such small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.
引用
收藏
页码:622 / 625
页数:3
相关论文
共 50 条
  • [1] Primary carbonatite melt from deeply subducted oceanic crust
    Walter, M. J.
    Bulanova, G. P.
    Armstrong, L. S.
    Keshav, S.
    Blundy, J. D.
    Gudfinnsson, G.
    Lord, O. T.
    Lennie, A. R.
    Clark, S. M.
    Smith, C. B.
    Gobbo, L.
    NATURE, 2008, 454 (7204) : 622 - U30
  • [2] Role of strain localization and melt flow on exhumation of deeply subducted continental crust
    Zavada, Prokop
    Schulmann, Karel
    Racek, Martin
    Hasalova, Pavlina
    Jerabek, Petr
    Weinberg, Roberto F.
    Stipska, Pavla
    Roberts, Alice
    LITHOSPHERE, 2018, 10 (02) : 217 - 238
  • [3] Detecting deeply subducted crust from the elasticity of hollandite
    Mookherjee, Mainak
    Steinle-Neumann, Gerd
    EARTH AND PLANETARY SCIENCE LETTERS, 2009, 288 (3-4) : 349 - 358
  • [4] Exhumation of deeply subducted crust: Review and outlook
    Yican LIU
    Chengwei ZHANG
    ScienceChina(EarthSciences), 2020, 63 (12) : 1904 - 1924
  • [5] Exhumation of deeply subducted crust: Review and outlook
    Yican Liu
    Chengwei Zhang
    Science China Earth Sciences, 2020, 63 : 1904 - 1924
  • [6] Exhumation of deeply subducted crust: Review and outlook
    Liu, Yican
    Zhang, Chengwei
    SCIENCE CHINA-EARTH SCIENCES, 2020, 63 (12) : 1904 - 1924
  • [7] Experimental constraints on recycling of potassium from subducted oceanic crust
    Schmidt, MW
    SCIENCE, 1996, 272 (5270) : 1927 - 1930
  • [8] Recycling of subducted oceanic crust: Constraints from Nb/U
    Sun, W. D.
    Hu, Y. H.
    Zartman, R. E.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (12) : A915 - A915
  • [9] Guided waves propagating in subducted oceanic crust
    Martin, S
    Rietbrock, A
    Haberland, C
    Asch, G
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2003, 108 (B11)
  • [10] Fingerprinting subducted oceanic crust and Hainan Plume in the melt sources of Cenozoic Basalts from the South China Sea Region
    Tian, Zhi-Xian
    Yan, Yi
    Huang, Chi-Yue
    Dilek, Yildirim
    Yu, Meng-Ming
    Liu, Hai-Quan
    Zhang, Xin-Chang
    Zhang, Yong
    TERRA NOVA, 2021, 33 (01) : 21 - 29