Vertex-quasiprimitive locally primitive Graphs

被引:0
|
作者
Ben Gong Lou
Cai Heng Li
机构
[1] Yunnan University,School of Mathematics and Statistics
[2] Southern University of Science and Technology,Department of Mathematics
来源
关键词
Vertex-quasiprimitive; Locally primitive; Arc-transitive; 05C25; 20B05;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that finite non-bipartite locally primitive arc-transitive graphs are normal covers of ‘basic objects’—vertex quasiprimitive ones. Praeger in (J London Math Soc 47(2):227–239, 1993) showed that a quasiprimitive action of a group G on a nonbipartite finite 2-arc transitive graph must be one of four of the eight O’Nan–Scott types. In this paper, we classify the basic locally primitive graphs where the action on vertices has O’Nan–Scott type HS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{HS}$$\end{document} or HC, extending the well-known Praeger’s result about ‘basic’ 2-arc transitive graphs.
引用
收藏
页码:1279 / 1288
页数:9
相关论文
共 50 条
  • [1] Vertex-quasiprimitive locally primitive Graphs
    Lou, Ben Gong
    Li, Cai Heng
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (04) : 1279 - 1288
  • [2] Symmetric diameter two graphs with affine-type vertex-quasiprimitive automorphism group
    Amarra, Carmen
    Giudici, Michael
    Praeger, Cheryl E.
    DESIGNS CODES AND CRYPTOGRAPHY, 2013, 68 (1-3) : 127 - 139
  • [3] Symmetric diameter two graphs with affine-type vertex-quasiprimitive automorphism group
    Carmen Amarra
    Michael Giudici
    Cheryl E. Praeger
    Designs, Codes and Cryptography, 2013, 68 : 127 - 139
  • [4] Vertex-quasiprimitive 2-arc-transitive digraphs
    Giudici, Michael
    Xia, Binzhou
    ARS MATHEMATICA CONTEMPORANEA, 2018, 14 (01) : 67 - 82
  • [6] Finite Locally-quasiprimitive Graphs
    Song, Shujiao
    Li, Caiheng
    Wang, Dianjun
    ALGEBRA COLLOQUIUM, 2014, 21 (04) : 627 - 634
  • [7] All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism
    Michael Giudici
    Jing Xu
    Journal of Algebraic Combinatorics, 2007, 25 : 217 - 232
  • [8] All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism
    Giudici, Michael
    Xu, Jing
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 25 (02) : 217 - 232
  • [9] Finite locally-quasiprimitive graphs
    Li, CH
    Praeger, CE
    Venkatesh, A
    Zhou, SM
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 197 - 218
  • [10] All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism
    Giudici, Michael
    Xu, Jing
    Journal of Algebraic Combinatorics, 2007, 25 (02): : 217 - 232