Live cell PNA labelling enables erasable fluorescence imaging of membrane proteins

被引:50
|
作者
Gavins, Georgina C. [1 ]
Groeger, Katharina [1 ]
Bartoschek, Michael D. [2 ,3 ]
Wolf, Philipp [4 ]
Beck-Sickinger, Annette G. [4 ]
Bultmann, Sebastian [2 ,3 ]
Seitz, Oliver [1 ]
机构
[1] Humboldt Univ, Dept Chem, Berlin, Germany
[2] Ludwig Maximilians Univ Munchen, Dept Biol 2, Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Ctr Mol Biosyst BioSysM Human Biol & BioImaging, Munich, Germany
[4] Univ Leipzig, Fac Life Sci, Inst Biochem, Leipzig, Germany
关键词
IN-SITU; SUPERRESOLUTION MICROSCOPY; NUCLEIC-ACIDS; COILED-COILS; DNA; RECEPTOR; MOLECULES; COMPUTATION; STABILITY; KINETICS;
D O I
10.1038/s41557-020-00584-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA nanotechnology is an emerging field that promises fascinating opportunities for the manipulation and imaging of proteins on a cell surface. The key to progress is the ability to create a nucleic acid-protein junction in the context of living cells. Here we report a covalent labelling reaction that installs a biostable peptide nucleic acid (PNA) tag. The reaction proceeds within minutes and is specific for proteins carrying a 2 kDa coiled-coil peptide tag. Once installed, the PNA label serves as a generic landing platform that enables the recruitment of fluorescent dyes via nucleic acid hybridization. We demonstrate the versatility of this approach by recruiting different fluorophores, assembling multiple fluorophores for increased brightness and achieving reversible labelling by way of toehold-mediated strand displacement. Additionally, we show that labelling can be carried out using two different coiled-coil systems, with epidermal growth factor receptor and endothelin receptor type B, on both HEK293 and CHO cells. Finally, we apply the method to monitor internalization of epidermal growth factor receptor on CHO cells.
引用
收藏
页码:15 / +
页数:20
相关论文
共 50 条
  • [1] OaAEP1-mediated PNA-protein conjugation enables erasable imaging of membrane proteins
    Lu, Zhangwei
    Liu, Yutong
    Deng, Yibing
    Jia, Bin
    Ding, Xuan
    Zheng, Peng
    Li, Zhe
    CHEMICAL COMMUNICATIONS, 2022, 58 (60) : 8448 - 8451
  • [2] Live-cell profiling of membrane sialic acids by fluorescence imaging combined with SERS labelling
    Lv, Jian
    Chang, Shuai
    Wang, Xiaoyuan
    Zhou, Zerui
    Chen, Binbin
    Qian, Ruocan
    Li, Dawei
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 351
  • [3] HuC–eGFP mosaic labelling of neurons in zebrafish enables in vivo live cell imaging of growth cones
    James A. St John
    Brian Key
    Journal of Molecular Histology, 2012, 43 : 615 - 623
  • [4] Fluorescence live cell imaging
    Ettinger, Andreas
    Wittmann, Torsten
    QUANTITATIVE IMAGING IN CELL BIOLOGY, 2014, 123 : 77 - 94
  • [5] Fluorescence proteins, live-cell imaging, and mechanobiology: Seeing is believing
    Wang, Yingxiao
    Shyy, John Y. J.
    Chien, Shu
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2008, 10 : 1 - 38
  • [6] HuC-eGFP mosaic labelling of neurons in zebrafish enables in vivo live cell imaging of growth cones
    St John, James A.
    Key, Brian
    JOURNAL OF MOLECULAR HISTOLOGY, 2012, 43 (06) : 615 - 623
  • [7] Supported cell-membrane sheets for functional fluorescence imaging of membrane proteins
    Perez, JB
    Martinez, KL
    Segura, JM
    Vogel, H
    ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (02) : 306 - 312
  • [8] FluoSim: simulator of single molecule dynamics for fluorescence live-cell and super-resolution imaging of membrane proteins
    Matthieu Lagardère
    Ingrid Chamma
    Emmanuel Bouilhol
    Macha Nikolski
    Olivier Thoumine
    Scientific Reports, 10
  • [9] FluoSim: simulator of single molecule dynamics for fluorescence live-cell and super-resolution imaging of membrane proteins
    Lagardere, Matthieu
    Chamma, Ingrid
    Bouilhol, Emmanuel
    Nikolski, Macha
    Thoumine, Olivier
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] An introduction to live cell fluorescence imaging
    Maddox, P
    AMERICAN LABORATORY, 2000, 32 (08) : 30 - +