The Tate conjecture for K3 surfaces over finite fields

被引:0
|
作者
François Charles
机构
[1] Université de Rennes 1,IRMAR–UMR 6625 du CNRS
来源
Inventiones mathematicae | 2013年 / 194卷
关键词
14C22; 14C25; 14G15; 14J28;
D O I
暂无
中图分类号
学科分类号
摘要
Artin’s conjecture states that supersingular K3 surfaces over finite fields have Picard number 22. In this paper, we prove Artin’s conjecture over fields of characteristic p≥5. This implies Tate’s conjecture for K3 surfaces over finite fields of characteristic p≥5. Our results also yield the Tate conjecture for divisors on certain holomorphic symplectic varieties over finite fields, with some restrictions on the characteristic. As a consequence, we prove the Tate conjecture for cycles of codimension 2 on cubic fourfolds over finite fields of characteristic p≥5.
引用
收藏
页码:119 / 145
页数:26
相关论文
共 50 条