共 50 条
A minimum problem with free boundary for a degenerate quasilinear operator
被引:0
|作者:
Donatella Danielli
Arshak Petrosyan
机构:
[1] Purdue University,Department of Mathematics
[2] University of Texas at Austin,Department of Mathematics
来源:
Calculus of Variations and Partial Differential Equations
|
2005年
/
23卷
关键词:
System Theory;
Minimum Problem;
Free Boundary;
Type Minimum;
Quasilinear Operator;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we prove \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$C^{1,\alpha}$\end{document} regularity (near flat points) of the free boundary \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\partial\{u > 0\}\cap\Omega$\end{document} in the Alt-Caffarelli type minimum problem for the p-Laplace operator: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J(u)=\int_\Omega\left( |\nabla u|^p +
\lambda^p\chi_{\{u>0\}}\right)dx\rightarrow \min\qquad
(1<p<\infty).$$\end{document}
引用
收藏
页码:97 / 124
页数:27
相关论文